欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf

    • 资源ID:836416       资源大小:672.83KB        全文页数:30页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf

    1、1w.”.+=-= =*-”-=+“3;:-”G*. ._TECHNICALNOTESNATIONALADVISORYCOMMITTEEIOR AERCNAUT!ICS.-.N(2.847. _SQUARE PLATEWITH CLAi4PEDEDGES UNDER NORMALPRESSUREPRf3DUCIHGLARGEDEFLECTIONS .-By SamuelLevy .-NaiicnalBureau of Standards. DOCUMENT doaa.mentcontainsclaeaifiedinformationafkctingthe hkmnatDefenwof tbe

    2、United StateswiCOMMTYE13;FQR AERONA-UTICS - .-. . -. .TECHNICAL.NOTE.,NO847 .: .- .=-.-4 “. “. -,-.-.,. . .-_ .=.- ,_+UARE FLATii WITHC”tiMED.Eii% Ul.PEESSURZI”- “ “:”- ;.L._._,. . .PRODUCINGR.E. ,.,. .,. By Sariue:.,DEFLEGTZONS : - . m.-., .z- -.- .-,.-m=.+.+Levy . - - -:;*. -.:-r,.“ :“- . .l.-. :-

    3、“.SUMMARY “. :- . ,.- -.=- . . -f. . . ., .-” :-.- LA theor;plate with clampededgeswas givenby Henclcyin reference2 and an approximatesolutionfor largedeflectionswa.epresentedby Way in reference3. In a previous.pape5 “ “ -“-=(reference1) there iB presenteda solutionof the funds -mentalVon,K_-+sionan

    4、d lateralloading. .-.=- In the presentpaper.atheor.et.ica”lan,a-ly”sisi“s-iv”e”“-”-for the stressesand deflectione”of a squarelateundernormalpressureyroducinglarge,de,flectio,na,. The edge . -, -supportsare assumed“t-oclamp the”l”a,t.erigidlyagainstrotationsand -. . . . . . . . . -.Provided by IHSNo

    5、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 IJACA!J?ecknicalNote No. 847simplysupportedrectangularplate. The resultsfc?rs-malldeflectionsobtainedby the analysisagree exactlywiththose o,fHenckyand for largedeflectionsdifferby Ies-sthan 5 percentfrom theapproxima

    6、tesolutionnf Way.The workwas carried-on with thefinancialassistanceof the NationalAdvisoryCommitteefnr Aeronautics. Ac-knowledgmentis made to theBureau ofAeronautics,NavYDepartment,for its cooperationin a programof test-sofrectangularplatesunder normalpressurethatfurnishedthe backgroundfor the prepa

    7、rationof this paper. Theauthor is gratefulfor theasistanceof membersof theEngineeringMechanicsSectionof the NationalBureau ofStandards,particularlythatGreenman.FUNDAM13NT!.LLof Dr. W. Rambergand Mr. S.EQUATIONSSymbolsConsideran initiallyflat squareplate of unif%rmthicknese(fig.1), and leta lengthof

    8、sidesh thicknessP normalpressure, assumed”unifcrmw normaldisplacementof points of middlesurfaceh.a71.,E YoungrsmodulusL PoissonlsratioD Eh: flexuralrigidityof plat”e”12(1+2)X*Y coordinateaxes,lyingalong edges of platewiththeir originat one,cornermx,my edge,beti$”iqgmomentsPer“unitlengthabout x andY

    9、r“esect-ively ,.“axes, .-,.a normalstress “T shearingstess.+Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TechnicalNote No. 847 3tensilestra-in, “ unit el”o”rigationshearngstra,in .-.T- . extreme-fiberstressesin dir”ecti”onsofaxes median-fiber

    10、stressesin dir-e,ctionsof axesextremefiberbendingstresse,sin directionsofaxesdeflectioncoefficientsstressfunction . .stresscoefficientsaveragemedian-fi%erstressesin s$ andydirections,respectivelyauxiliarypressurereplacingedge momentsunif2rmn?rmalpressure P. expressedas a Fourierseries= Pa(x,y)+ P(x,

    11、Y)coefficientinXourier seriesfor pressure,-PC(X,Y) .momentarm of auxiliarypressuredistribution,PJX,Y)momentcoefficientsExpressionsfor Stressesa“ndStrainsThe generalequationsfor stressesand strainsaredevelopedby imoshenkoin reference4 (ch. IX) and arealso given in reference1. The Stressesat the middl

    12、esurfaceof the relateare related to the stressfunctionF by: ,.a2Fcrl.-Y ?)Xa I“.(1).Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACATechnicalMote N;-847the extreme-fiberbendingstressesin the plateare re-latediiothe deflectionsbyEh(-?JW)J32w .G;

    13、=_2(1-W2) ax2 2;Eh(a2w a2wall= _ +lJ)/“(2)Y2(1-I.L2)bya “. x2 .Eh a2w()T1f=- Xy (l+M) axay(3)and the extreme-fiberbendingstressesat the edges of theplateare relatedto the bendingmomentsper unit lengthby:“l6my =(x=O,x=a)6myII0Y =w ha1 -“6mxQ11x =lfha .:.(y=O,y=a)6m=all= _.Y .ha J!l?hestrainsat the mi

    14、ddlesurfaceof theplate are:.(4)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TechnicalNobeIMb.847 58RelationsbetweenEdge Mdmentsand LateralPressureThe requirededge moments my=willbe replacedby an auxiliarypressuredistrib%;on” a(xSY)near theedg

    15、es of the plateas shown in figure2. If thispressuredistributionis expressed%y a Fourierseries (reference5, p.295)and the value . 4TTmxpa-(x,y)= .: i Brlys sln (5) “-r=T,3,5. a S=j3#5”.a2 “a,.,.Express;m= and bj a Fourierseries,Kher8 ksYand kr are coefficientsto bedeterrninedand wherefor.,a squarepla

    16、te ks = kr when s =r,4a2 ? “- rlrxx = PIJ k= sin n l?=1,3,5. a“co7.“4a2 ) -Y=- ks sinS=1,3,5.;.1- -(6) .Insertingequation (6) in equation(5)giv6s .-,=,4.,2Pa(x,Y)=;).p y (rks+skr)sinsin (7)r d=173,5.S=1,3,5.The uniformnormalpressure .p may also he ex-pressedby a Fourierseries (reference5, p. 295) as

    17、,m co,4,2 “() . sin= s7Typb(x,y)( .P “(l-r, sin (8) -r rs a a=1,3,5 8=1,3.,Sc-c,The additionof the,tiniformnormalpr”essurep (xry)?and the auxiliarypressurereplacingthe edge mcmen s.Pa(x,Y) is obtainedby adding equatinns(7)an(16)Provided by IHSNot for ResaleNo reproduction or networking permitted wit

    18、hout license from IHS-,-,-8 NACfLTechnicalNote.No.847The family of equationsrelatingthe pressurecoeffi-cients Pr,s and the deflectioncoefficients Wm,n arealso givenby the generalsolution(reference1). For thespecialcase a = b(squareplatej,presentedin thispaper, the.first22 termsin each of thss.eequ y

    19、= 0, y=a wmn sin (19)m= sX,3,6,. an=l,3,5.,.Equations(18)or (19)are equivalentto the familyof equationsO=w1,1+3W1,3+5W1,5+7W1,7+. Cl=w,+3w,.J+5W3,5+7W3,7+. O=w5,1+3W5,3+5W5*5+7W7+.s J. ,. . a71 a71 a15(20)Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,

    20、-,-NAc!ATechnical”NeteNo647 9.The deflectioncoefficients m.n mtistnow %e de-.-terminedfrom table 1 by”solvingeach equationfor thelinearterm in terms of the quhic termsand the.pressurecoefficients Pr,s- The deflectioncoefficients m.nthus obtainedare now substitutedintoequations(20);and, for the press

    21、urecoefficientspr.sare substitutedtheirvaluesas given%y equation (lb)-The resultingequationsare,(1=2.835+7.66k1+0.324k3+0.0800k5+0.03Q3k7+0.0145k9+EKl)o=0.0523+0.324kl+l.713k3+0.140sk5+Oo0675kT.60k9+.K3Io=0.00680+().08()()k1+0.1405k3+o.96k5+.0690k7+o.0433k9+.+Kq aly)o=0.001767+o.03031cl+0.0675k3+0.0

    22、690k5+.660k7+0.0402k9+.+K7O:000648+0.0145kl+0.0360k3+0.0433k5+0.0402k70.f3t15k9+.+K9J. . a71 a15 a15 a15 a15where K1.K are functios”of the pressure p and of the cubes of the deflection”-functiofim,n” The first 22terms in the equationsfor the first five coefficients Krare given in table2. As an examp

    23、leof the use of table2,.SOLUTIONOK EQUATIOFSValuesof DeflectionCoefficients m,n andEdge MomentCoefficients kr.The methodof obtainingthe requiredvalues of the de-flectioncoefficients m,n and the edge momentcoeffi-wl-,-”-cients kr con ists of assumingvaluesfor -2 -h and thenpa W1,3 3t3solvingfor , kl,

    24、 k3, k5, byXh4 h hProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10 NACA TechnicalNot=-No. 847successiveapproximationfrom the simultaneousequationsin ta%le 1 and equations(10)and (21). These.calcula-W1l.tionshavebeen madefor-iOvalues of -W1,3 a) W1,

    25、3 ,=.6”28i/h 3”2Qth ) (28a) .:the use of only the,first three terms in the first equation.l!7,3 W3,3of table 1, excluding cubicterms involving 9 ,-W1,5 h h, etc.,as factors, gives the equationh _ -Pi; la4 Wl,l wl,l 3- -+ “0.370 ()i- 0.490 - “(t28b)n4Eh4 h “h,. , ., .,and the use of”only the first tw

    26、o t“ermsin the firstequation of table.1, excludingall cubic terms, givestheequation , , . pl,1a4 “-wl, l:0. = “-1- o.370-. 4Eh4. =,.,-(28C) .-.- -.,Itis evidentfrom table 6 thatthe”convergenceisrapid for thecenterdeflection. The”convergencei.ssome-what slower”in the case of the b“e.nd.ing stressat t

    27、he rnidpoint of tiheedge. It is estirua”tedfram table 6 that thepossibleerror in table5 is less than 2 percent.,=.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-14 NACA TechnicalNo”teiJo.”-847COMPARISONWITH THE RESULTS OBTAINEDBY PIZ3VIOUSAUTHORSThe

    28、 ClampedRectangularPlatewith SmsllDeflections!l!he.earliestwork on the problemof the clampedrec-tangularplateknown.to the author is that in 1902byKoialovich(reference7). Koialovichsolvedthepreblemby using trigonometricseries. In 1913Hencky (reference2), usinga methodwhich he creditstoM. Levy, madeat

    29、horoughanalystsof the momentsand deflectionsforplateswith smalldeflections. In 1914Boobnov (seep.222 of reference4) extendedthescopeof oia.lovichlsearlierwork.Since that time”additionalwork on theproblemextendingthe analysistc differenttypesof load-ing and a widerrange of plate sizeshas been donebyN

    30、adai (reference8), !Timoshenko(references4 and 9),I#ojtaszak(reference10),Evans,(reference11),Young(reference12)-;.andPickett reference13). The resultsof theseauthorsfor the squareplatewith clampededgesagree Czoselywith Henckysresultspresentedin reference 2. The presentpaper gives,for small deflecti

    31、ons,a value of the centerdeflectionof 0.001263pa4/11ascomparedwith Henckytsvalueof 0.001265pa4/D;and.avalue of the bending“momentperpendiculartO the egeatmidpoint.of0.0512 a2p csGmparodwith-HenckyIsvalue of0.0513sap. .,The ClampedRectangularPlatewith LargeDeflectionsThe onlypreviousanalysisof square

    32、plateswithclampededgesunder normalpressureproducinglargede-flectionsthat is known to the author iS the analysisby Way (reference3) in which theRitz energymethod“isused with polynomialssatisfyingtheboundaryconditions,andcontd,ining11 undeterminedconstant Althoughhiscalculationswere made for a Poisson

    33、fsratio of 0.3, itappearsfrom Waysanalysisof circularplates (ref-er-ence 15) thatsmall changesin Poissonrsratio do “notappreciablyalter the solution. In”figures6 and 7 arecomparedtheresultsobtainedby Wtiyin reference.3 wit-hw = 03 and the resultsof the presentpaperwith p =0.316. The agreement“isexce

    34、llent(within5percent)forboth thetotal stressat the middleof the sideand thecenterdeflection. Theagreementbetweenthe membranestressesis not so good. In no case,however,do themembranestressesdifferby more than4 percentof thetotal stress.Provided by IHSNot for ResaleNo reproduction or networking permit

    35、ted without license from IHS-,-,-NACA TechnicalNote No. 847 15The InfinitePlate Stripand the CircularPlate. ,The values of the centerdeflectionand of the ex-tremefiberstressesat the centerof the sidesfor asquareclampedplatewith Ia,rgedeflectionare comparedin figures8 and 9 with thosefor a clampedcir

    36、cularplate (reference14)lofdiametera and thosefor aclampedlongrectangularplate (references4 and 15) ofwidth a. As wouldbe expected,thesquare plate is morerigid than the long rectangular-plateand more flexiblethan the circularplate.NUMERICALE2CAMPLES 13mgle.1Calculatethe centerdeflectionand the maxim

    37、ufiextrenefiberstressfor a 10by 10 by 0.05inchaluminumalloy plate (E= 107 lb/in2,jL= 0.316) with clampededges, subjectedto a normalpressureof 2 poundspersquare inch.The pressureratio is:pa4 2 x 104=Eh4 107 x (0.05)4,“= 320From figure3, the correspondingdeflectionratio iscenter.= 1.72hso that the cen

    38、terdeflectionisw = 1.72X 0.05 = 0.0860inchcenterFrcm figure5, the maximumextremefiberstressratioforthe edge at its midpointisoaz = 65.0Eh2so that the maximumextreme-fiberstress isProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-16 NACATechnicalNote No

    39、.107” X. (0.05)2a= 65.0 - = 16,300 pounds102 “Zxample2.-.per squareinchCalculatet-hepressurethatwill producea maximumextreme-fiberstressof 30,000pbundsper squareinch ina 15- by 15-by O.IO-inchaluminum-alloyplatewithclampededges. .-The maximumextreme-fiberstressratio is,Ua a 30000 x 152”.-= 67*5 = 10

    40、7 x (0.10)2Eh2From figure5, the correspondingpres$ureratio ispa4 = 339Eh4so that the normalpressureis339 x 107 x (0.10)4P= = 6.70poundsper squareinch“154NationalBureau of Standards,Washington,D. C.,May 24, 1941.-. -. .1.,Provided by IHSNot for ResaleNo reproduction or networking permitted without li

    41、cense from IHS-,-,-NACA TechnicalNote No. 847 17 .REFERENCES. . .1. Levy, S.: BendingofRe,ctngular.Plateswith LargeDeflections. !I?.N. No. 846,NACA, 1942.Hencky.,H.”hber.denSpannungszus.tandi-n:”echteckigen,-.-2. “.-ebenenPlatten. DoctorIS.diss.,Darmstadt, R.Oldenbourg(Munich),1913., .-3. Way, Stewa

    42、rt: UniformlyLoaded,Clamped,RectangularPlateswith LargeDeflection. Proc,.,Fifth Int.Cong.Appl. Mech. (Cambridge,Mass., 1938). JohnWileypt. 4, of Ecyk.er Math.Wiss., 1910,art. 27, pp. 31185.?. Koialovich,Boris Mikhailovich: Ob odnumuravnenti. chastnfimirproizvodniimi chetvertagoporiadkaIloctorialdiss

    43、.,Sankt.,(Petersburg),1902. . 8. Nddai,A.: ElastischeFlatten. JuliusSpringer (Berlin),1925,pp. 18084.9.Timoshenko,StephenP.: Bending of RectangularPlateswith ClampedEdges. Proc.,FifthInt.Cong,Appl.14ech.(Cambridge,Mass.,1938). John Wiley9lg4:o245:03M00402.0Canterdeflectioncentorho.237,471.695.9121.1

    44、211.3231.5211.7141,902StressatmidpointLfedge-hzlna2o“5.3611. OJj16.9723,$30,63g.247.056.366,2o.12.471.06l.n2.924.235;7i37609.64o5.4su.5218.0325.3233.542.452.?363.975.8Stressatcenterofplate ,ind%mao2.54.66.7a.g9.911.112.913./315.1w direct(b) y=o, y=a.Y9cdistributionforapplyingtheedges(a)x = 0,Provide

    45、d by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. *A , dvtba” midpoint Of (06s9) .9, cd mipointOffD6SD)ic,m“+Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-*. . .tS, Uumped .squme /de nxwf piper)&iksons rut

    46、io, 0.316.-iC. C/amDed clcubrbi? &eference .3)-PoAsonG rafio,”0.3.- /00 “./Pressure rofio, pa+/EhqFigure 9.- Variation of meximomextreme fiber stress at W&with pressure for square plate, oiraulu plate,aod long reotanguhr plate.a.28.R, Clmped ttnvg recfongulopl (ref/.Poi&s ru+io, 0.316.+o Cokxhted poinb1 1 1 1 1 I 1 1 I Io /00 200 300400Pressure ratio, pa+JEh4rwla 0.- Variation of deflection at oenter with prmmurefor quare pltbte, circtimr p18*e, and lemgreotangulu plate.IProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-


    注意事项

    本文(NASA NACA-TN-847-1942 Square plate with clamped edges under normal pressure producing large deflections《夹边在正常压力下产生大挠度的方形板》.pdf)为本站会员(terrorscript155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开