欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TN-3344-1954 Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer.pdf

    • 资源ID:836316       资源大小:993.79KB        全文页数:49页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TN-3344-1954 Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer.pdf

    1、C*1 ,1NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICALNOTE3344TIIEORETICALANDEXPERIMENTALINVESTIGATIONOFAERODYNAMIC-HEATINGANDISOTHERMALHEAT-TRANSFERPARAMETERSONA HEMISPHERICALNOSEWITHLAMTNARBOUNDARYJL%YERAT SUPERSONICMACHNUMBERSBy HowardA. StineandKentWanl.assAmesAeronauticalLaboratoryMoffettField,

    2、 CaYf.UOAcX3PY:RETURRAFWL(DOGL)KIRTLANDAFB,N.IProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECHUBRARYKAFB,NMNATIONALADVISORYCOMMITTEEFORAEIJONAUT1Iilllllllllllllllllllllllll-001sL07iTECHNICALNOTE3344THEORETICALANDEXPERIMENTALINVESTIGATIONOFAERODYN

    3、AMIC-13?ATINGANDISOTHERMALHEAT-TRANSFERPARAMETERSONA HEMISPHERICALNOSEWITHLAMINARBOUNDARYIJNERATSUPERSONICMACHNUMBERSByHowardA.StineandKentWanlassSUMMARYTheeffectofa strong,negativepressuregradientuponthelocalrateofheattransferthrougha laminarboundarylayerontheisothermalsurfaceofanelectricallyheated

    4、,cylindricalbodyofrevolutionwithahemisphericalnosewasdeterminedfromwind-tunneltestsataMachnuniberof1.97. Theinvestigationindicatedthatthelocalheat-transferpara-meter,Nu/, basedonflowconditionsjustoutsidetheboundarylayer,decreasedfromavalueof0.65*O.1Oatthestagnationpointofthehemi-spheretoavalueof0.43

    5、K).0atthejunctionwiththecylindrical.afterbody.Becausemeasurementsofthestaticpressuredistributionoverthehemisphereindicatedthatthelocalflowpatterntendedtobecomestationaryasthefree-streamMachnumberwasincreasedto3.8, thisdis-% tributionofheat-transferparameterisbelievedrepresentativeofallMachnumbersgre

    6、aterthan1.97andoftemperatureslessthanthatofdis-sociation.Thelocalheat-transferpsrameterwasindependentofReynoldsnu?iberbasedonbodydiameterintherangefrom0.6xIto2.3x106.IThemeasureddistributionofheat-transferparameteragreedwithin*I8percentwithSJIapproximatetheoreticaldistributioncalculatedwithforelmowl

    7、edgeonlyofthepressuredistributionaboutthebody.Thismethod,applicabletoanybodyofrevolutionwithanisothermalsurface,combinestheManglertransformation,Stewsrtsontransformation,andthermalsolutionstotheFallmer-Skanwedge-flowproblem,andthusevaluatestheheat-transferrateinaxisymmetriccompressibleflowintermsoft

    8、heknownheat-transferrateinanapproximatelyequivalenttwo-dimensionalincompres-sibleflow.Measurementsofrecovery-temperaturedistributionsatMachnumbersof1.97and3.04yieldedlocalrecoveryfactorshavinganaveragevalueof0.823+0.012onthehemispherewhichincreasedabruptlyattheshouldertoanaveragevalueof0.840*C).012o

    9、nthecylindricalafterbody.Thisresultsuggeststhattheusual,representationofthelsminarrecoverya71factorasthesquarerootofthePrandtlnumberisconservativeinthepresenceofa strong,acceleratingpressureadient.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2INTR

    10、ODUCTIONNACATN3344Duetotheprocessesoffrictionandcompression,abodymovingthroughtheatmosph=eaccumulatesasthermaleneraportionofitsmechanicalenerofmotion.Thephysiological,structural,andaero-dynamicramificationsofthiswell-knownfactintherealmofhigh-speedflightconstitutetheaerodyrmnicheatingproblem.Thepres

    11、entstatusofknowledgeinsofarastheaerodynamicaspectssreconcernedwillbediscussedinthefollowingsection.Itissufficientnowtostateonthebasisofareviewofselectedliterature”(refs.1 through25)thattheheattransferthroughthesurfaceofa supersonicvehiclecanbepre- dietedwithconfidenceonlywhentheheatpathisthroughregi

    12、onsoflaminarflowandsmallpressuregradient.Becauseinsupersonicflowaconstant-pressuresurfacehasa shsrpleadingedgewhichisdifficult,ifnotimpossibletocool(refs.15and16), thepracticalvehicleforsustainedsupersonicflightmay,ofnecessity,beblunt.Althoughfavor- abletothepromotionoflsminarflow,theseverepressureg

    13、radients .associatedwithbluffbodiescanresultinheat-transferratesquitedif-ferentfromthoseonconstant-pressuresurfaces.Theheat-transferchar-acteristicsofthecompressibleboundarylayeronbluffbodiessrethere-forerequired.Thepresentinvestigationhasasitspurposethemeasurementin .supersonicflowofhminsr-boundary

    14、-layertemperature-recoveryfactorsandlocalheat-transfercoefficientsontheuniformlyheatedsurfaceofa.hemisphere-cylinder.Theexperimentalresultsme comparedwithanewly #developedmethodofapproximatepredictionwhichutilizesexistingsolu-tionstotheboundary-layerproblem,andwhichbodyofrevolutionwithanisothermalsu

    15、rface.JWIIIYSISStatusofKnowledgeisapplicabletoanybluffTheultimaterateofheattransfer-througha giventypeofboundarylayer(i.e.,laminarorturbulent)hasbeenfoundtodependuponthefluidflowconditionscharacterizedbyMachnumberandReynoldsnumber,thefluidpropertiesspecifiedbyPrandtlnumber,thesurfacetemperaturedistr

    16、ibution,andthebodyshape.Inordertocalculatetheheat-transferratefromboundary-layertheory,thebodysurfaceiscommonlyassumedto _bea flatplateoraxisymmetric.Effectsofbodycurvatureuponthepres-suredistributionnormaltothesurfaceareneglected,andbody-shapeeffectsareassumedtodependonthestreamwisepressuredistribu

    17、tionalone.Whendealin”gwithbodiesofrevolution,anadditionalshapeparam-etermustbeconsideredwhichaccountsforthevariationofcircumferencealongtheaxis.HoWever,becausethisadditionalshapeparsmeterhasbeenshowntorelatetheaxisyrmnetricboundary-layerflowwithanassociateda“.-.aProvided by IHSNot for ResaleNo repro

    18、duction or networking permitted without license from IHS-,-,-NACATN 3344 3s two-dimensionalflow(ref.2),itispossible,withoutlossingenerality,toapplytwo-dimensionalresultstoaxisymmetricbodies.*A representativesampleoftheextensiveliteraturedealingwithlaminar-boundary-layerheat-transfertheoryisgiveninre

    19、ferences3throughXL.Thelargebodyofemlysisbaseduponintegralmethodsofsolutionhasbeenexcludedfromthissurveypartlyintheinterestsofbrevity,andpartlybecausetheaccuracyoftheseintegralanalysesisjudgedbycomparisonwithsolutionssuchasthoseofreferences3through11. Fluid-propertyandflow-psraetereffectsarestressedi

    20、nreferences3, k, and5.Nonisothermalsurfacesareconsideredinreference6. Pres-suregradienteffectsarestudiedinreferences7 and8. Effectsofsmallpressureandwall-temperaturegradientssreinvestigatedinreference9.Bothpressure-gadientandfluid-propertyvariationsareconsideredinreference10,andpressure-gradientandw

    21、all-temperatureeffectsaredis-cussedinreferenceIL. Theresultsofthesestudiessuggestthatfluid-propertyandflow-psrsmetervariationsexerta relativelymildinfluenceonthelocalheat-trsnsfercoefficient.Pressureandwall-temperaturegradients,ontheotherhand,canproducelocalheat-transfercoefficientswhichdepartsignif

    22、icantlyfromtheisobaricendisothermalpredictions.Theinfluenceofshapeisillustrat+iinreference12-which,inciden-tally,presentsanexcellentaccountofmethodsemployedtopredictheattransfer-whereinaprocedureisdevelopedfortheChowever,sincethedataofreference20wereobtainedundertransientconditionsinthepresenceofa s

    23、urfacetemperaturetendingtobecomenonisothermal,thevalidityoftheseresultsisuncertain.HeatTransfer.AccordingtotheNewtonianLawofheattransfer,thethermalflowthroughaunitareaofthefluidincontactwithanisothermalsmfaceisproportionaltothedifferencebetweentheactualskintemperatureandtheskintemperaturecorrespondi

    24、ngtonoheatflow.ThefactorofProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACATN3344proportionality,calledthelocalheat-transfercoefficient,depends, *fn.casesofforcedconvection,upontheboundary-layertype,andtheflow,fluid-property,andpressure-gradient

    25、parametersmentionedpre- Vviously.Forlsminsrflow,thelocalNusseitnumberformedfromthelocalheat-tramfercoefficient,thelengthofboundary-layerrun, andthelocalfree-streamthermalconductivitycube combinedwiththelocalReynoldsnumberinto a localheat-transferpersmeter,definedastheratiooftheNusseltnumbertothesqua

    26、rerootoftheReynoldsnumber: .hx/klj% “JKXILl(1)(ForNotation,seeAppendixA.)Onthebasisofavailabletheoryforisothermalsurfaces,moderateMachnumber,andsmalltemperaturedifferences,onecanreasonthatthe .localleminarheat-transferparameteronthebluntnoseofabodyofNu/fiO.30. Thehighervalue(atthestagnationpointofa

    27、sphere)ispredicted(foru =0.7)inreference22byneglectingcompressibility;thelowerfigureisappli-cabletoa flatplateorahollowcylinderwithsurfacep=alleltotheairstream. a71Noexact,simpleexpressioncanbewrittentopredictthelocalheat-transferpsrsmeterforpointsonthesurfaceofabodylyinginregions Mofarbitrarypressu

    28、regradients,althoughanumberofapproximatemethodsareavailable(refs.12,23,and24forexample).Anotherapproximatemethod-anadaptationofatechniquedescribedinreference22-whichiseasytoapplytouybody ofrevolutionandpromisestobefairlyaccurateforuniformsurfacetemperaturesnotgreatlydifferentfromthestagnationtempera

    29、ture-wasdevelopedinconjunctionwiththepresentexperimentalinvestigation.Thismethodhastheadvantagethatnoknowl-edgeisrequiredofthevelocityortemperatureprofilesintheboundarylayer;onlythepressuredistributionaboutthebodyneedbeknown.Themainresultsofthisanalysissresummarizedinthefollowingparagraphs;thedetail

    30、scanbefoundinAppendixB.Briefly,themethodmakesuseofthetransformationsofMangler,(ref.2)andStewartson(ref.25)toremovetheproblemfromtheexisym-metriccompressibleplanetotheapproximatelyequivalenttwo-dimensionalincompressibleplane.Thelocalheat-transferpsnuneterontheaxisym-metricbodyincompressibleflow,IVu/a

    31、nd,consequently,thedistributionofaxisymmetriccompressibleheat-transferparsmeterNu/fi canbeestablished.Inthepresentinvestigation,thelocalheat-transfer-parameterdistributiononthesurfaceofahemisphere-cylinderiscalculatedusingtheexpertientallydeterminedpressure-gradientparameter,m,accordingtotheforegoin

    32、gmethod.RecoveryTemperatureandRecoveryFactorWhenabodymovesthroughtheatmospherethesurfacetendstoassumea temperaturedistribution,calledtheequilibriumtemperaturedistribu-tion,suchthatthelocalheattransferateachpointisaminimum.Intheabsenceofradiationandinternalheatflowtheminimumheattransferiszero;thisequ

    33、ilibriumdistributioniscalledtherecovery-temperaturedistribution,andthebmlyissaidtobeinsulated.Sincea spotonthesurfacecanassumea temperaturenogreaterthanitslocalrecoverytem-perature,thequestionofhowhotabodycanpossiblybecomeforgivenflightvelocityandambienttemperaturecanbeansweredbyinvestigatingtheprop

    34、ertiesofinsulatedbodies.Therecoverytemperatureatapointonaninsulatedbodyisspecifiedbythesumofthelocalfree-streamtemperaturejustoutsidetheboundarylayerandthetemperatureriseacrosstheboundarylayer.Thetemperatureriseacrosstheboundarylayerdependsupontheboundary-layertypeandthedimensionlessflow,fluidproper

    35、ty,andbody-shapeparametersmentionedpreviously.Itisconvenientto comparetheactualtemperatureriseacrosstheboundarylayerwiththerisewhichwouldoccurifthelocalfreestreamwerebroughttorestadiabatically.InthenotationofAppendixA,theratiosoobtainedcanbewrittenTr-T1Cr=Tt-T1 (8)ThefactorCr iscalledtheferentvaluef

    36、orlaminarthan. Withtheaidofanaloguetemperature-recoveryfactorandhasadif-puterssmdnumericalinteations,thelocallaminarrecoveryfactorson-aninsulatedflatplatefiairIthemaiimumrateofdecreaseis. abouthoFperminute.Althoughthermalequilibriumisneverachieved,itispossibletoobtainvalidtemperaturedataundercertain

    37、operatingconditions.WindtunnelNo.2wasusedforsomeofthetestsbecauseitprovideshigherMachnuribersandReynoldsnumbersthanwindtunnelNo.1.TestBodyA hemisphericalnoseshapewasselectedforthetestbodyinthepresentinvestigation.Considerationsofexperimentalconvenience(suchaseaseofconstruction,mounting,andtesting)an

    38、dtheprecedentofcon-siderabletheoreticalbackgrounddealingwithflowaboutspherescombinedtosuggestthehemisphereasthetestbcdy.Thek-inchdiameterhemi-sphericalnosehadacylindricalafterbodywitha lengthlimitedto3inchestoavoidintersectingthereflectionofthebowshockwavefrmnthewind-tunnelwalls.Threesting-supported

    39、modelsofthetestbodywereconstructed,eachhavingthessmeexternalsizeandshape,andsur-faceroughnesses(lessthanabout20microinches).Theinstrumentationhousedineachandthesting-supportdetails,however,weredifferent.0Pressure-distributionmodel.-Thepressure-distributionmodel(fig.l(a)madefromaluminum,hadawallthick

    40、nessofone-halfinch.Twenty-two0.031-inch-diameterstatic-pressureorificesWereplacedonthesurfaceinaplanepassingthroughtheaxisofrevolution(meridianplane). BrassplugscontainingthedrilledorificeswerepressedProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-10

    41、 NACATN3344into3/16-inch-diameter,3/8-inch-deepholesinthealuminum.Copper-tubingattachedto-theplugspassedradiallythrough0.064-inch-dismeterholesintothemodelcavityandemergedthrougha2-inch-diameterhollow astingthreadedintothebase.Eachplugandtubewascoatedwithanalkydresinbeforeinsertiontopreventleaks-bet

    42、weenthecavityandthesurface.Recovery-temperaturemodel.-Therecovery=tegperaturemodel(fig.l(b),madefromstainlesssteel,had,exceptfortheafterbody,a nominalwallthicknessof0.020inch.Thethicknessofthecylindricalportionincreasedlinearlyfrom0.020inchatitsjunctionwiththehemi-sphere(shoulder)to1/8inchatthepoint

    43、of”attachmentofthel/2-inch-thickbasering.Thethinwallservedtominimizeboththeheatcapacityofthemodelandthelongitudinalheatconductionwithintheshell.Stainlesssteelwasusedbecauseofitslowthermalconductivityrelativetoothermetals.Twenty-fourconstantanwiresweresolderedintoholesinthesurfacelyinginarneridisnpla

    44、ne,asshowninfigurel(b).Asinglestainless-steelwireconnectedtotheinsideoftheshellnearthebasecompletedthereturncircuitforthetwenty-fourstainless-steel-constantanthermocouples.Thethermocouplewireswerebroughtintothe2-inch-dibneterhollowstingthroughapressure-tightfittinginthebase.Theassemblywascalibratedi

    45、na liquidbath.A coppertubecom-municatingwiththemodelcavitywasprovidedsothattheinternalairpressurecouldbereducedtolessthan400microns(0.016-inchHg)abso- *lutetominimizeinternalheattransferduetofreeconvection. Heat-transfermodel.”-Theheat-transfer-model(fig.l(c)wasastainless-steelshellwhichformedtheres

    46、istanceeleme”ntofthelow- voltage,high-amperageelectricalcircuitusedtoheatthebody.Thecircuitwasarrangedsothata 60-cyclealternatingcurrentcouldbepassedlongitudinallythroutheshell,enteringthrougha copperbusbarimbed-dedinthenose,andleavingthrougha copper-collectorringwhichformedthebase.Theinteriorsurfac

    47、eoftheshellwascontouredtoprovideaneffectivethicknessdistribution,andthereforearesistancedistributionwhichwasproportionaltotheexpectedheat-removalcapabilitiesoftheairstreamwhenthetemperaturewasuniform.Twenty-twocopper-constantanthermocouplesweresoft-solderedinholesdrflledthrougl”theshellinameridianpl

    48、ane,withthethermocouplejunctionswithinl/32inchoftheoutersurface.Thespacingisindicatedinfigurel(c).Thewirester-minatedata selectorswitchoutsidethewindtunnelwhichwasarrangedsothat,onalternatesidesofthebody,suctieedtngpairs“ofthecopperwireswhichformedonesideofeachcopper-constantanthermocouplecir-cuitco

    49、uld.beutilizedastapstomeasuretheA.C.voltagedropexistingalongany12arconthehemisphere.A simultaneousindicationoftem-peraturecouldbeobtainedfromthethermocouplelyingwithinthesameintervalbutdisplaced1800abouttheaxis.Thestationsontheafterbody .werespacedthesanedistanceapartaswerethoseonthehemisphere.Topreventheatgeneratedinthenosefromflowingbyconductionintothe3/thestaticpressureacrosstheboundary


    注意事项

    本文(NASA NACA-TN-3344-1954 Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer.pdf)为本站会员(testyield361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开