欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TN-3105-1954 Aerodynamics of slender wings and wing-body combinations having swept trailing edges《带有后掠翼边缘的细长机翼和机翼机身组合的空气动力学》.pdf

    • 资源ID:836303       资源大小:1.24MB        全文页数:99页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TN-3105-1954 Aerodynamics of slender wings and wing-body combinations having swept trailing edges《带有后掠翼边缘的细长机翼和机翼机身组合的空气动力学》.pdf

    1、I.,- 11.AERODYNAMICSFOR AERONAUTICSTECHNICAL NOTE 3105SLENDERHAVING SWEPT TRAILING EDGESBy Harold MirelsLewis FlightPropulsion LaboratoryCleveland, Ohio“,WashingtonMarch 1954.COMBINATIONS.-y -km am.= . . . .-. . Provided by IHSNot for ResaleNo reproduction or networking permitted without license fro

    2、m IHS-,-,-.I tuHL! nhY nh-, tiNACA TN3105TABLE OF coIiTm$TsPageSUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lINTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1SECTION 1 -BASICCONCEFTS . . . . . . . . . . . . . . . . . . . . . 3l.l EquationofMotion. . . . . . . .

    3、. . . . . . . . . . . . . 31.2 Asymptotic FormofCrossflow . . . . . . . . . . . . . . . . 41.3Lift, Drag, and Moments . . . . . . . . . . . . . . . . . . 61.4 Symmetry inPlanarProblems . . . . . . . . . . . . . . 10SECTION 2 - GENERATINGFUNCTIONS . . . . . . . . . . . . . . . . ll2.1Evaluation of Br

    4、anch Points . . . . . . . . . . . . . . ll2.2 Behavior of Flow Near Boundary Edges . . . . . . . . . . . . 122.3 Detemnination of GeneratingFunctions . . . . . . . . . . 14SECTION 3 -INTEGRAL EXl?RXSSIONSFOROW FIELD . . . . . . . . . 2O3.1 Inteal Expressions Direct Problem) . . . . . . . . . . . 203

    5、.2 IntegralExpressions Inverse Problem) . . . . . . . . .213.3 IntegralEquations (DirectProblem) . . . . . . . . . . . . 22SECTION 4 - TOFSWEPl? WINGS (DIRECTPROBIJIM) . . . . . . . .234.1 Load Distribution . . . . . . . . . . . . . . . . . . .234.21ntegral Equations for S . . . . . . . . . . . . .

    6、. .264.3 Limiting Solutions of Integral Equations . . . . . . . . . . 294.4 Numerical Solutions . . . . . . . . . . . .30SECTION 5 - ROLL13JGSWEXTG (DCT PROBLEM) . . . . . . . . .315.1 Load Distribution and Rolling Moment . . . . . . . . . . . . 315.21ntegral Equation for R . . . . . . . . . . . . .

    7、 . 335.3 Limiting Solutions of IntegralEquation . . . . . . . . . . 335.4 Numerical Solutions . . . . . . . . . . . . . . . .33SECTION 6 - PITCEUNG SWEPT WING (DCT PROBLEM) . . . . . . . . . . 356.1 Load Distribution . . . . . . . . . . . . . . . . . . . 356.21ntegrsJ_Equation for Q. . . . . . . . .

    8、 . . . . . . . . .366.3 lXmiting Solutions of IntegralEquation . . . . . . . . . . 376.4 Numerical Solutions . . . . . . . . . . . . . . . . 38SECTION 7 - LIl?IOF SWEFT WINGS (INVERSEPROWM) . . . . . . 4O7.1 Determination of Crossflow . . . . . . . . . . . . . . . 407.2 Equation of Trailing Edge . .

    9、 . . . . . . . . . . . . . . .427.3 Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43-. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-ii NACA TN 3105PageSECTION 8 - ROLIZNG SWEPT WING (DIVERSEPROBIWM ) . . . . . . . .448.1 Determinat

    10、ion of Crossflow . . . . . . . . . . . . . . . . 448.2 Equation of Trailing Edge . . . . . . . . . . . . . . . . . 458.3 Rolling Moment . . . . . . . . . . . . . . . . . . . . 45SECTION 9 - PITCHING SWEFT WING ( PROBLEM) . . . . . . .469.1 Determination of Cros6fluw . . . . . . . . . . . . . . . . 4

    11、69.2 Equation of Trailing Edge . . . . . . . . . . . . . . . . . 469.3 Pitching Moment . . . . . . . . . . . . . . . . . . . . 47SECTION 10 -WING-BODY COMKUWTIONS. . . . . . . . . . . .4710.l Joukowski Transformation . . . . . . . . . . . . . . . . . 4810.2 Lift of Swept Wing on CylindricalBody . .

    12、. . . . . . . . 50SECTION Xl_- UNSTEADY TWO-DIMENSIONALINCOMPFUZSSIB13FLOWS . . . . . 52ll.l General Considerations . . . . . . . . . . . . . . . . . . 5211.2 Two-DimensionalAirfoils . . . . . . . . . . . . . . . . . 55.3 Wagner Problem . . . . . . . . . . . . . . . . . . . . 56SECTION 12 - CONCLUDI

    13、NG REMARKS . . . . . . . . . . . . . . . .58APPENDIXESA- SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 59B -FINITE PART OF IMPROEER INTEGRALS . . . . . . . . . . . .63c - ELLIPTIC INTEGRALS . . . . . . . . . . . . . . . . . . . . . . 65D- LIMITING SOLUTIONS OF INTEGRAL EQUATIONS . .

    14、. . . . . . . . . 68E- COMPARISOI?WIm m 13 . . . . . . . . . . . . . . .72REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 73FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . 76. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS

    15、-,-,-NATIONALAXRODYNAMCCS OF,ADVISORY COMMITTEEFOR AERONAUTICSTECHNICAL NOTE 3105SLENDER WINGS AND WING-BODY COMBINATIONSHAVING SWEPT TRAILING EDGESBy Harold ltlrelssLIMMARYA general method, based on two-dimensionalcrossflow concepts, ispresented for obtainingthe lift and moments on highly swept win

    16、gs.Emphasis is placed on obtaining solutionsfor wings having swepttrailing edges. The methd is applicable for all problems where thevelocity boundary conditions can be made homogeneousby differentia-tion in the streamwiseor spanwisedirections.Lift, roll, and pitch solutions,for highly swept wings, a

    17、re pre-sented. Both direct problems (where the plan form is given) and in-verse problems (where the shed vortex sheet is given) are considered.The solutions of the direct problems are expressed in terms of func-tions which are evaluated from integral equations. Some limitingsolutions of the integral

    18、 equations are indicated. Numerical resultsare given for wings having paraILel leading and trailing edges.The transformationof a wing-body problem to an equivalent iso-lated wing problem is discussedand the application for finding thelift of a wing-body combinationis indicated.Application of the met

    19、hod forsolvingunsteady two-dtiensionalincompressibleflow problems is also indicated. In particular, theWagner problem is formulated in terms of the techniques developedherein.INTRODUCTIONIn 1924, Muand inv - ,2)3/2(4.1.4)PJwhere indicates the infinitepart of the improper integral (appendixB). Integr

    20、atim of equation (4.1.4)yields (see appendix C)(4.1.5)3Strictly speaking, equation (1.1.2)is applicablewhen the bound-ary conditionsare satisfied on the wing surface. When the boundaryconditions are satisfied in the z = O plane, as is done herein, theappropriate expressionfor pressure isP- PO=-PO (

    21、)uuo+mwuo+:for a configurationat angle of attack a. At any rate, the loading isproportional to u, for a wing of zero thickness, since sll the otherterms are symmetricwith respect to z.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TN 3105 25whe

    22、re F(*,k) and E(t,kt) are incompleteeiptic integrals of thefirst and second kind, respectively,with smplitude j3and moduluskt.These have the values(4.1.6)To satisfy the condition of zero loading in the wake, equation (4.1.5)is set equal to zero for y = yl. This gives a relation between aud A2. If S,

    23、 a function of x, is intrduced according to .()W2 A. +A2y22z s= Y2(Y22 - Y12)then equation (4.1.5)becomeswhere K and E* me complete elliptic integrals of first and Eecondkind with modulus k!. Equation (4.1.7)describes the spanwisemri-ation of loading onas a scd.e factor.the wing. The unlmown functio

    24、n S appears onlyThe generatingfunction can now be written as16A/(P - Y22W - Yf)Fran equations (1.3.4)and (1.2.5)and the asymptotic(4.1.8),the lift per unit x is, in terms of S,From equations (4.1.7)and (1.3.11the suction forceedge isdFx ()Y22 - Y12= _Q2 22 Y2The function S remains to be determined.(

    25、4.1.8)form of equati(4.1.9)at the leading(4.1.10).- . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-26 NACA TN 31054.2 Integral equationsfor S. - The function S is determinedfran equations (3.3.1)or (3.3.2). Each of these equations is con-sidered

    26、separately. -(a)Equation (3.3.1): Substitutioninto equation (3.3.1)yields .oy=l.p.i.uo/*(4.2,PJ 0(4.2.lb)where b is the value of y2 at x . c and y b is assumed. Thepath of inteation for equations (4.2.1)is indicated in figure 9(a).Transformingfrom to y2 as the miable of integration givesFran equatio

    27、n (4.2.2)it is found that S +1 for y2b. Thus the result isProvided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACA TN 3105 27L 5YY2o= (Et y2 . Y& W )Y1 dyl+ .(Y2-Y2)(yz - y22) “ SY2 6-Y2W2b(4.2.3)It is noted that the integrand of equation (4.2.3)contains

    28、both theunknown function S and its derivative.(b)Equation (3.3.2: Substitutinginto equation (3.3.2)andnoting that y b yield-11-+11-= I.P.iL+ 2(4 $s+K2-Y12HC2 -Y22).(4.2.4)Z=oside of equation 4.2.4)asIt is desirable to express the right-handa function of x plus a function of y so that the functions o

    29、f xor y can be equated. Taking the imaginarypart of the right-handside and utilizing the finite-part technique result in an area ofintegrationas indicated in figure 10(a). This integration canbedecomposed into two separate integrationsas indicated in figures10(b) and lO(c). The right-hand side of equation (4.2.4)thenbecomes- . . .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-


    注意事项

    本文(NASA NACA-TN-3105-1954 Aerodynamics of slender wings and wing-body combinations having swept trailing edges《带有后掠翼边缘的细长机翼和机翼机身组合的空气动力学》.pdf)为本站会员(ideacase155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开