欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-TM-1285-1950 Investigations of the wall-shearing stress in turbulent boundary layers《在混乱边界层的墙体抗剪应力的研究》.pdf

    • 资源ID:836159       资源大小:530.41KB        全文页数:26页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-TM-1285-1950 Investigations of the wall-shearing stress in turbulent boundary layers《在混乱边界层的墙体抗剪应力的研究》.pdf

    1、NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICALMEMORANDUM1285LOANCOPY: RETURNTOAFWL TECHNICAL LIBRARYKIRTLAND AFBs NC M./INVESTIGATIONSOF THEWALL-SHEARINGSTRESSINTURBULENTBOUNDARYLAYERSBy H. LudwiegandW. TillmannTranslationof “Untersuchungeniiberdie Wandschubsparumngin turbulentenReibungsschichten”

    2、WashingtonMay1950Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-NATIONALADVISORYCOMMITTEEFORAERONAUTICSTECHNICELME240MNIIJM1285 . .INVESTIGATIONSOFTHEWiLL-SHEARINGSTRESSINTURBULENTBOUNDARYLNERS* - -ByH.LudwiegandW.Tillmsnn. .SUMMARYBecauseoftheunsat

    3、isfactorystateofknowledgeconcerningthesurfaceshearingstressofboundarylayerswithpressuregradients,theproblemisreexamined.Itisfoundthatforgeneralturbulentboundarylayers.inwallproximity,thatis,inthelsminsrsublayer,inthetransitionzoneandinthepartofthecompleteturbulentzonenearthewall,thesameuniversallawa

    4、ppliesasfortheylateflow.Fromthegeneralvalidityofthislawa formulawasdeducedforthelocalhag coeffi-cientcfr,inwhichcf dependsonlyontheReymoldsnumberRe formedwiththemomentumthicknesssndona profilepsrametery. Thisrelationwasconfirmedsatisfactorilybydirectmeasurementswitha newinstrument.Therelatedfriction

    5、coefficientcf canthenbedeterminedsimplyfromtheknownvelocityprofile. .-.l?romtheformulafor Cft itfollows,inagreementwiththetests,thatthe cf valuesforboundarylayerswithacceleratingsnddecele-“-ratingpressurearehigherandlower,respectively,thsafortheplate flowatequalReynoldsnumber.Thus.forgreaterReynolds

    6、numberssmalllocaldragcoefficientsareattainablenotonlybykeepingtheboundarylayerlaminarbutalsobyappropriatepressurevariationinturbulentboundarylayers.Theriseofthefrictioncoefficienttoamultipleofthatforplateflowinboundarylayerswithpressurerise,asclaimedbyvariousworkers,isheretithdisproved.-.-1.INTRODUC

    7、TIONThewall+hesringstressesinlsminarboundsrylayerscanbecom-putedona strictlytheoreticalbasis,sincetherelationshipbetweenvelocityprofilesndshearingstressisknown.But,thisprocedurecannotbeappliedtotheturbulentboundsrylayerssincetherelationship“*“UntersuchungenfiberdieWsmlschubspannunginturbulentenReibu

    8、ngsschichten.“ ,.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2 NACATM1285fortheshearingstresses,duetotheturbulentexchti-geisstillunknown.Forthisreason,thelawsforturbulentwallfrictionmustbedeterminedbyexperimentalvest-igations.Suchinvestigations“

    9、fallintotwoclasses,termedforbrevity,plateflows”andpipeandchanuelflows.”Theapproximateformulasforthefrictiondrag,deducedbythevariousinvesti-gatorsfromthetestdata,areinagreementtosomeextent.Someinvestigationshavebeenmadealsoonboundarylayerswithpressuregradients,bothaccelerating-anddecelerating,butthed

    10、ataonwallfrictionareeitherabsentaltogetherorpartlyUnsatisfactory.Theseinvestigationsweremadeina channelofcircularsection(refer-ence1)or,inmostcases.ofrectangularsection(references2,34and5). Forthelatter,onechannelwallwasdesignedasflattestplate,onwhichtheboundarylayertobeexploredwasmeasured.Theopposi

    11、tewallwasadjustabletothedesiredpressuredistribution.Itwasspacedfarenoughfromtheexperimentalsurfacetomaintaina corewithpotentialflowbetweenthetwoboundarylayers(freeboundarylayer).Thewall+hesringstreswasdeterminedfromthemeasuredvelocitypro-filebymeansofvonKarmchcancelthetwo-dimensional.ityoftheflowass

    12、umedaccordingsmomentumequationfortheinterpretation,andarepr=tovonKarmansumablyresponsiblefortheimprobableresultsoftheaforementionedauthors.Someoftheseauthorshadobservedthat,ingreatlyretardedflows,thelocal.dragcoefficientCf(=Tw/Q,Tw= wall-shesringstress,Q thedynamicpressureoutsidetheboundarylaer)rose

    13、abruptlytoamultipleofitsoriginalvalueaftertravelinga certaindistauceinflowdirection,ratherthsmdecreased,asactually52.J”;-$w =momentumthiclmessofboundary52layer,Re=UT =Reynov=kinematicviscosity.Qpsntityg inequation(1)isa fixedfunctionis,naturally,differentforplate,pipe,andchanneldependenceOf on Re is

    14、verysmall,thatis,thedifferverylittlefordifferentReynoldsnubers.which,however,“-flow.Thevelocityprofiles(b)Thelocalfrictioncoefficientcf canalmysbereresentedintheformCf=F(Re) (2)(Cff= Tw/: $; TV = wall.+hearingstress;p =density).QpantityF isagaina fixedfunctionforplate,pipe,andchannel” “flow;F canbec

    15、cxuputedforplateflowbythemomentmequationwhen gisknown,becausethetheboundarylayer.(c)Forthepartrelationtotalfrictiondragapearsaslossofmomentuminofthevelocityprofilesnearthewall,theu ()fU*Y=*u 7-wasobtained. v(U*=TWP “= shearifitressvelocity)(3)lInthisformula,theReynoldsnumberformedwiththemomentumthic

    16、kness52 waschosenascharacteristicquantitybecauseitismoreappropriateforboundarylayerswithvariableoutsideressure. .Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4 NACA1141285IIis relationholdstruewiththessmefunctionf-forthepart .ofplate,pipe,orchanne

    17、lflownexttothewall(ProvidedthattheU*Yfi values arenottoosmallfullyturbulentzonev )50 ,equstion(3) can bereplacedveryaccuratelybyu *=alog* y.+bua and b beinguniversalconstants.TMsapproximatedbya powerlawl/11u() U*Y=*u TtheapproximateI?onmla(3a) -logarithmiclawcanbe .-(Sb).whereC and n areconstantswhi

    18、charestillsomewhatdependentonthe u*y/vzoneforwhichtheapproximationistobeespeciallygood.AsalreadystatedinLudwiegtsreport(reference7), it is tobe ,expectedthattheuniversallaw,equation(3) or (Sa),is,asidefromtheplate,pipe,andchsnnelflow,applicablealsotomoregeneralizedboundary-layerflowsinwallproximity.

    19、Itnemely,thatwhenthebounary-layerprofilesareplottedinthemanneroflogu/U againstlogy/52(fig,1),parallelstraightlines-areobtainedforsmally/52.Consequently,uisinallcasesproportionaltothesamepowerof y.Fromtheslopeofthestraightlines,thispowerfollowsas 0.13= , whichisin.goodagreementwithequation(Sb)forthe

    20、u*y/Vrangeinquestion.However,thisstill.isnocompellingproof-ofthevalidityofequation(Sb)forthereasonthat-thepowerof y caubecheckedbyprofilemeasure-ment,butnottheconstentC,becauseu* Isunknown.Withthevalidityof*equation(3)fortheportionoftheboundarylayernexttothewall,u and,hence,w and cf dependonlyonthev

    21、elocityprofileandthematerl.al-constantsoftheflowingmedium;so,whenthevelocityprofileisknown,cfocembecomputed.A COl?re-spndingrelationbetweencf,Re,anda profileparemeteryettobedefinedisderivedinthefollowing.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-

    22、,-NACA!lML285 5%2Theterm y= isintroducedasprofileameter;u2 isudefinedasfollows:Ifthelaw,equations(3),(3a),and(Sb),isvalidfor y valuesgreaterthm 52,then u2 issimplythevalueof uatthepointy = .32.But,ifthelaw,uations(3),(3a),and(3b)Yappliesonlyto y valuessmallerthan 52)then U2 isthevaluewhichu wouldass

    23、umeifthelaw,Equations(3),(3a),ad (3),wrapplicableuptothepointy =82. Thus,thedoublelogarithmic_plottingof u/U againsty/52(fig.1)givestheprofileparameter7,Ywhentherectilinearpartoftheprofileisextendedasfaras = 182 ,52tsre fromfigure1.andthecorrespondingvalue”ofuThe derivationoftheaboventiohedrelationb

    24、etweencf,Re,and y proceedsfromequation(3).Theprofileparsmeterisintroducedbyputtingy = 62 andu2=*uTheequationstatesad U5252/V;therefo(4)thata directconnectionexistsbetweenu*/u52u*()U5252= hl+j v2mustbeapplicable,thefunctionh beingdefinedbyfunctionf._btroductionof2Gruscitz(reference2)definedthequantit

    25、yv =1-profileparsmeter;butby U52 thevslueqf u at Y = 52 iSalwaysmeant.-.-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-6gives,aftersimplerearrangementCf= 2y2h2(ReForabbreviation,thefunctionisNACATM 1285-. .-7)=72H(Re7) (5)written2h2=H. ”So,foralltu

    26、rbulentboundary-layerprofileswhosepartnexttothewallisrepresentedbythegenerallqw,equation(3),thefrictioncoefficientisgivenintheformofequation(5).Todefinethefunc- ,tionsh and H inthisequation,equation(4)couldbereplaced,fortheargumentinquestioninaccordancewithequation(3a),byU*andnumericallysolvedfor =h

    27、. Butsincetheconstantsa and b .u2inequation(3a)arenotaccuratelyenoughknown,thefollowingmethcdofdefiningH seemstobemoreappropriate.Byequation(1),theprofileparameterfortheprofilesoftheplateflow,designatedYo,iSOY dependenton Rethence“-70 = yo(Re). Oninsertingthisvalueinequation(5),thisequationmustsuppl

    28、ythedragcoefficientCf fortheplateflow.Thus,bearinginmindequation(2),thefunctionalequationfor H followsas70%(Reyo)=F(Re) (6)whereF(Re)isthefrictioncoefficientoftheplateflow.This equation, whichmustbefulfllledforall Re,definitelydefinesthe .-functionH forknownfunctionsF(Re)and 70(Re).AbbreviatingRe70(

    29、Re)= giterationgivesforRethechainfunctionERe=T-707()70“-.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-7NACATMu85which,insertedineation(6)givesfor Hsnd,whenthefunctionH inequation(5)isthenreplacedbytheprecedingexpression,Since y. varies very little

    30、with Re (fig.2), “theofthechainfunctionissogoodthatinthefirstfactorofthefirstdeureeandinthesecondfactor,thetermofhavetobeincl7 -0,7642: Re= 8.00 X“H12= 1.267;y- 0.7263: Re-7.98 x03H12= 1.337; Y“=0.8884: Re= 1.02 x 04*12 = 1.4; 7% (),569 .Figure7.- Severalvelocityprofilesfromtestseriese andfindimensi

    31、onless -double-logarithmicrepresentation.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-. . .20101.0Comtmtprmmmg Re-l,tmxlosconstantpmearre endtmtmlem?id* RE-mlx loga75Comtmt Pra8ann3 aud stripm -1.21 x 104a71 a11a11a71 a11* * #=./15 20 25 35s!#Figure 8.- Severalvelocityprofiles from test serSes e andfwithuniversallaw,equation(34,inwSllproximity. .,1Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-


    注意事项

    本文(NASA NACA-TM-1285-1950 Investigations of the wall-shearing stress in turbulent boundary layers《在混乱边界层的墙体抗剪应力的研究》.pdf)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开