欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    NASA NACA-RM-E51H13-1951 Aerodynamics of slender bodies at Mach number of 3 12 and Reynolds numbers from 2 x 10(exp 6) to 15 x 10(exp 6) I - body of revolution with near-parabolic .pdf

    • 资源ID:836030       资源大小:1.06MB        全文页数:48页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    NASA NACA-RM-E51H13-1951 Aerodynamics of slender bodies at Mach number of 3 12 and Reynolds numbers from 2 x 10(exp 6) to 15 x 10(exp 6) I - body of revolution with near-parabolic .pdf

    1、SECURITY INFORMATION,.1= . _ =. -L. .- -,. .,- - ., -; WA. -u . .=-a.,L.RESEARCH MEMORANDUMAERODYNAMICS OF SLENDER BODIES AT h consequently,the preceding conclu-sions were based on the bottom profile. This disturbance as well asthat to be mentioned subsequentlyfor angle of attack is attributed to %i

    2、rregularitiesin the tunnel flow. Wcauae correctionsof these non- g-unifoties would require considerablymore calibrationdata than arenow aveilable,no attempt was made to evaluate the effect herein. Thedisturbance affecting the side-pressuredistribution at zero angle ofattack was evaluated in terms of

    3、 over-all drag and at most gave merror of approximately1 percent. -Angle of attack. - The axial pressure distributions along the topand bottom of the model are presented in figure 5 for three angles ofattack and three Reynolds numbers. The pressure-coefficientticrementsdue to angle of attack, aspare

    4、d in figure 6 with theOn the bottom surfaceexperiment snd theory haveprogressively worse as thedetermined from figures 4 and 5, are com-slender-bodytheory of reference 1.of the model (figs. 6(a), 6(b, and 6(c),similartrends, but the agreementbecomes hangle of attack increases. (The humps in.the curv

    5、es are attributedto the tunnel disturbancementioned pre-viously.) The effect of Reynolds number upon the agreementwas neg- ligible at 3 angle of attack. At the higher emgles”of attack, nodefinite Reynolds number effect ws.aobservable.On the top surface of the model (figs. 6(d), 6(e), and 6(f), theef

    6、fect of increasingthe angle of attack w.to decrease the pressureson the nose section in a manner similar to that predicted by theory.The theoretical curves for a = 3, 8, and 10o cross each other,whereas the experimental curves do not. The differencebetween experi-ment and theory for the cylindrical.

    7、portion of the model increased asthe angle of attack increased. This result is attributedto cross-flowseparationwhich will be discussed later.Some improvement in the agreementbetween experiment and theorywith .creasingReynolds number was observed on the forward part ofthe nose; however, the change i

    8、n the agreement for the rest of the bodywas negligible.Experimentalpressure distributionsas a function of the meridianangle around the body are given in figure 7ufor three axial stationsand three Reynolds numbers. Since no conclusiveReynolds number effectwas obtained, only the experimentalpressure i

    9、ncrements due to angle.9,.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2.-.NACA RM E51E13 9of attack for a Reynolds number of 15X1.06are compared with theory infigure 8. Agreement between eeriment and theory is good for CL= 3but poor for a = 8.Bas

    10、e PressuresThe variation of base-pressure coefficientwith Reynolds nuniberispresented in figure 9. In figure 9(a) the measured coefficients atzero angle of attack ere compared with the coefficients predicted by themethod of reference 8. The method of reference 8 predicts the correcttrend, but undere

    11、stimates the meaeured values by more than 10 percent.However, in terms of over-all drag this discrepancy amounts to only5 percent.The variation of base-pressure coefficientwith free-stresm Rey-nolds nuniberfor 0, 3, 6, 8, and 10 es of attack is presentedin figure 9(b). For zero angle of attack, the

    12、base-pressure coefficientdecreases with increasingReynolds number until a Reynolds numiberof6XL06 is reached and then remains relatively constant. With increasingsingleof attack, the Reynolds nuniberat which the pressure becomes con-stant increases to approximately 12X106 for u = 8.Figure 10 shows t

    13、he variation of the base-pressure coefficient withe of attack for five Reynolds nunibers. The base-pressure coeffi-cients for the highest Reynolds numbers decrease as the angle of attackincreases;however, for the two low Relds numbers, the pressure coef-ficient first increases to a maximum near u =

    14、+3 and then decreasesfor higher anglesof attack. The broken line between the m = Go datais used,to indicate that the true variation of the pressure coefficientin this region is unlmown. This behavior for the low Reynolds numbersmay be associatedwith the movement of the boundery-layer-transitionregio

    15、n with increasing angle of attack which will be discussed morefully later. The cross-over of the curves presented in figure 9(b mayalso be attributed to the movement of the boundary-layer-transitionregion with angle of attack.Boundary Layer and Cross-Flow Sep=ationSkin friction. - In order ta comple

    16、te the investigation of the com-pon=t drag forces which meke up the tital drag of the body at a . 0,friction-drag coefficientswere obtdned from the experimentally deter-mined displacement and momentum thicknesses for Reynolds numbers ofL406, 806, end 1406. The experimentalmean friction-drsg coeffi-c

    17、ients CD for different axial stations are presented in figure s for the pr botcimsurface “, 00.20#m Nominal angle .16 . c d attack r(d%Q o : 8365 .12- 10 o Linearized poten-$ cl tial theory* u. mon / 5CJ o 0 /$LJm- vjncw Q *: .04 Q . AU Pw; -njo nz .16(b) Reyn.lda number R., 8XI.06Sb.ttgi_eurfac: 8,

    18、 0 _.c.12.08 n5LA c a UL -f-J.04 n n na nQn u n . c 00 00An no .2 .4 .6 Axial.%tetiOn, li! ft -1.2 1X u1.6 1.8(c) Reynolds number Re, ISXI.06;bottan surface 6, 0.FlgWe 6. - Experimental and theoreticalezie.1variation of pm%=we -coefflciantincrement dueto angle of attcck.-.-$!co.-a71.3,.Provided by I

    19、HSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-l?ACARM E51H13 27mcoNINI.041080 + . 3A AA/A “/ *,-.04 v V top surfaoe e, IsoO.10/ 63AAA ID4 O FNominalcngle y Orattcckvv (d:g)+:/D 10 Linecrlzed poten-tial theory(e) Reynolds ntnuber E., 6x106; top smface e, 180.04l

    20、“”/ .90 / . 3 5 9( % w 3 v Vv .A G4. v v-.04 /v ./ T-.060 .2 .4 .6 .6 1.0 1.2 1.4 - 1.6 1.8hial station, x, ft(f) Reync.ldcnwnber Re, 15xI06; top surface 6, 160Figure 6. - Concluded. Experimental cnd theoretical .cxialvarlatlon of pressme-coefficientincrement due to angle of attack.Provided by IHSNo

    21、t for ResaleNo reproduction or networking permitted without license from IHS-,-,-NACAW E51H13.,14.12.10.03,C6.04.02002CJ (a)hlal station x, 4 hches; Reynoldn mnnber %, 2X106,.06r.04.020-.02t-.C4 1 I I I I I I II I I I I(b)kid. staticm x, 14 Indies;Reynoldsnumber Re, 2xlC.04.020-.02 J7%I I “ ysyC4lbo

    22、 ,6 0 -.5 -1.0C9e .9L I I I I I Io 30 60 90 120 1.30MO .i.lexidlanIMIS1O,8, deg(o)Axial Etitim x, 20.5 InoheajReynolAsnwnher Re, 2xI.06.1!w+_.IFQWe 7. - Rxgerhnentalvariaticm of presmnw meffioient with meridian an.8for given axialstation.Provided by IHSNot for ResaleNo reproduction or networking per

    23、mitted without license from IHS-,-,-NACA I/M E5ZEL3 29.mco(NN.14.12.10 ,.OaU%. ,_le of attaok CM(d:g).04 tm o: 5v 10.02 cY-o 1002- ) 7-An /8 (d)Jxial ,tatlat X, 4 tiahes;EeYMlds *- Eu, .CE-iE!:IReynoldsnumker Ib, ReyncIldEnumlwr Re, .9x10S.Pire 7. - tinued. bprimntal. tiatlon of premuxa oc-sfYioientwithmeridiananglefor van axialrtaticn.Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-


    注意事项

    本文(NASA NACA-RM-E51H13-1951 Aerodynamics of slender bodies at Mach number of 3 12 and Reynolds numbers from 2 x 10(exp 6) to 15 x 10(exp 6) I - body of revolution with near-parabolic .pdf)为本站会员(testyield361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开