欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf

    • 资源ID:821496       资源大小:310.09KB        全文页数:18页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf

    1、 KSKSKSKSKSKSKSK KSKSKS KSKSK KSKS KSK KS KS X 0001 31 31: KS X 0001 31:2009(MOD, ISO/IEC 2382 31: 1997) 2009 12 10 http:/www.kats.go.krKS X 0001 31:2009 : ( ) ( ) () ()SJ ( ) : (http:/www.standard.go.kr) : :1999 12 29 :2009 12 10 2009-0787 : : ( 02-509-7262) (http:/www.kats.go.kr). 10 5 , . KS X 00

    2、01 31:2009 (MOD, ISO/IEC 2382 31: 1997) 31: Information technology Vocabulary Part 31: Artificial intelligence Machine learning 1997 1 ISO/IEC 2382 31, Information technology Vocabulary Part 31: Artificial intelligence Machine learning , . 1 . , . . 2 . . ( ) . KS X 0001 1: 2007, 1: ISO/IEC 2382 1:

    3、1993, Information technology Vocabulary Part 1: Fundamental terms KS X 0001 28: 2007, 28: ISO/IEC 2382 28: 1995, Information technology Vocabulary Part 28: Artificial intelligenceBasic concepts and expert systems 3 3.1 . , . . , 3.5 3.8 . KS X 0001 31:2009 2 3.2 3.1 . . a) 1)b) ISO , 3 . c) d) e) f)

    4、 “ ” g) “ ” , h) i) , , 3.3 KS X 0001(ISO/IEC 2382 .) . , “ ” 01 . , , KS X 0001 . , KS X 0001 . ISO/IEC 2382 KS X 0001 . 3.4 ISO/IEC 2382 . 3 , ISO/IEC 2382 . 3.5 ISO/IEC 2382 . KS X 0001 . 3.6 3.2 , . 1) KS X 0001 ISO/IEC 2382 . KS X 0001 31:2009 3 3.7 . . KS X 0001 . , . , . 3.8 . , . . 3.9 , . .

    5、 . . 4 31 31.01 31.01.01 learning 31.01.02 machine learning automatic learning 31.01.03 self-learning 31.01.04 , . knowledge acquisition31.01.05 learning strategy KS X 0001 31:2009 4 31.01.06 . concept 31.01.07 . . , . concept learning 31.01.08 . conceptual clustering31.01.09 ( ) 1 . 2 taxonomy form

    6、ation 31.01.10 machine discovery 31.01.11 , . , , , , , , , , , , . cognitive science cognitivism 31.02 31.02.01 . unlearning 31.02.02 concept description 31.02.03 . chunking 31.02.04 characteristic description 31.02.05 discriminant description KS X 0001 31:2009 5 31.02.06 structural description 31.

    7、02.07 concept formation 31.02.08 “learned” “learnt” . partially learned concept 31.02.09 version space 31.02.10 example space instance space 31.02.11 description space 31.02.12 . concept generalization 31.02.13 , consistent generalization 31.02.14 constraint-based generalization 31.02.15 similarity-

    8、based generalization 31.02.16 , . complete generalization 31.02.17 ( ) . concept specialization31.02.18 confusion matrix 31.02.19 concept validation 31.03 31.03.01 , causal analysis 31.03.02 . rote learning KS X 0001 31:2009 6 31.03.03 adaptive learning 31.03.04 heuristic learning 31.03.05 learning

    9、by being toldlearning from instruction 31.03.06 advice taking 31.03.07 incremental learning 31.03.08 supervised learning 31.03.09 , . unsupervised learninglearning without a teacher 31.03.10 , learning by discoverylearning from observation 31.03.11 inductive learning learning by induction 31.03.12 .

    10、 learning from examples example-based learning instance-based learning 31.03.13 , . positive example positive instance 31.03.14 , . negative example negative instance 31.03.15 , , . near-miss KS X 0001 31:2009 7 31.03.16 , . case-based learning 31.03.17 1 . 2 . deductive learning learning by deducti

    11、on31.03.18 analytic learning explanation-based learning 31.03.19 , “ ” operationalization 31.03.20 . learning by analogy associative learning 31.03.21 / . credit/blame assignment 31.03.22 / reinforcement learning31.03.23 , , learning from solution paths 31.03.24 / . learning-apprentice strategy KS X

    12、 0001 31:2009 8 31.03.25 , , , .learning while doing 31.03.26 , . “ ” , , . genetic learning KS X 0001 31:2009 9 ( ) 31.02.04 31.03.08 31.02.05 31.03.09 31.02.06 31.01.06 31.02.11 31.01.07 31.01.08 31.02.02 31.03.15 31.02.02 31.01.10 31.02.07 31.03.10 31.02.08 / 31.03.21 31.02.12 31.03.12 ( ) 31.02.

    13、17 31.03.22 31.02.19 31.02.08 31.02.19 31.03.14 31.03.04 ( ) 31.01.09 31.02.09 31.02.03 31.02.10 31.03.01 31.02.11 31.03.18 31.01.11 31.03.10 31.02.05 31.02.10 31.02.06 31.03.12 31.01.08 31.03.13 31.03.11 31.03.14 31.03.13 31.03.18 31.01.02 / 31.03.21 31.01.10 31.02.14 31.02.15 31.03.02 31.03.16 31.

    14、03.20 31.03.18 31.03.17 31.03.24 31.02.16 31.02.02 31.03.01 31.03.19 31.02.15 31.03.24 31.03.26 31.03.20 31.01.11 31.03.05 31.02.13 31.02.02 31.02.12 KS X 0001 31:2009 10 31.02.13 31.01.02 31.02.14 31.01.05 31.02.15 31.01.07 31.02.16 31.02.01 31.02.08 31.03.02 31.01.02 31.03.03 31.01.03 31.03.04 31.

    15、03.19 31.03.05 31.03.03 31.03.05 31.01.05 31.03.07 ( ) 31.02.17 31.03.08 31.03.07 31.03.09 31.02.01 31.03.10 31.02.14 31.03.10 31.03.05 31.03.11 31.01.04 31.03.12 31.03.25 31.03.12 31.03.16 31.03.17 / 31.03.21 31.03.18 31.03.06 31.03.18 31.03.20 31.03.20 31.03.16 31.03.22 31.03.23 31.03.24 31.02.04

    16、31.03.25 ( ) 31.02.17 31.03.26 31.03.23 31.02.18 ( ) 31.01.09 ( ) 31.01.09 31.02.07 31.02.18 31.01.01 31.01.04 31.01.02 KS X 0001 31:2009 11 ( ) A discriminant description 31.02.05acquisition knowledge acquisition 31.01.04 structural description 31.02.06adaptive adaptive learning 31.03.03 discovery

    17、learning by discovery 31.03.10advice advice taking 31.03.06 machine discovery 31.01.10analogy learning by analogy 31.03.20 discriminant discriminant description 31.02.05analysis causal analysis 31.03.01 analytic analytic learning 31.03.18 E assignment credit/blame assignment 31.03.21 example example

    18、 space 31.02.10associative associative learning 31.03.20 learning from examples 31.03.12automatic automatic learning 31.01.02 negative example 31.03.14positive example 31.03.13C case-based case-based learning 31.03.16example-based example-based learning 31.03.12causal causal analysis 31.03.01charact

    19、eristic characteristic description 31.02.04explanation-based explanation-based learning 31.03.18chunking chunking 31.02.03 clustering conceptual clustering 31.01.08 F cognitive cognitive science 31.01.11 formation concept formation 31.02.07cognitivism cognitivism 31.01.11 taxonomy formation 31.01.09

    20、complete complete generalization 31.02.16 concept concept 31.01.06 G partially learned concept 31.02.08 generalization complete generalization 31.02.16concept description 31.02.02 concept generalization 31.02.12concept formation 31.02.07 consistent generalization 31.02.13concept generalization 31.02.12concept learning 31.01.07constraint-based generalization 31.02.14concept specialization 31.02.17concept validation 31.02.19similarity-based generalization 31.02.15conceptual conceptual clustering 31.01.08 genetic genetic learning 31.03.26confusion confusion matrix 31.02.18


    注意事项

    本文(KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf)为本站会员(postpastor181)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开