欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    EN 16603-50-05-2014 en Space engineering - Radio frequency and modulation《航天工程 无线电频率及调整》.pdf

    • 资源ID:716027       资源大小:1.62MB        全文页数:84页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    EN 16603-50-05-2014 en Space engineering - Radio frequency and modulation《航天工程 无线电频率及调整》.pdf

    1、BSI Standards PublicationBS EN 16603-50-05:2014Space engineering Radiofrequency and modulationBS EN 16603-50-05:2014 BRITISH STANDARDNational forewordThis British Standard is the UK implementation of EN16603-50-05:2014.The UK participation in its preparation was entrusted to TechnicalCommittee ACE/6

    2、8, Space systems and operations.A list of organizations represented on this committee can beobtained on request to its secretary.This publication does not purport to include all the necessaryprovisions of a contract. Users are responsible for its correctapplication. The British Standards Institution

    3、 2014. Published by BSI StandardsLimited 2014ISBN 978 0 580 84188 0ICS 49.140Compliance with a British Standard cannot confer immunity fromlegal obligations.This British Standard was published under the authority of theStandards Policy and Strategy Committee on 30 September 2014.Amendments issued si

    4、nce publicationDate Text affectedBS EN 16603-50-05:2014EUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN 16603-50-05 September 2014 ICS 49.140 English version Space engineering - Radio frequency and modulation Ingnierie spatiale - Radio frquence et modulation Raumfahrttechnik - Funkfrequenzen und

    5、 -modulation This European Standard was approved by CEN on 1 March 2014. CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists a

    6、nd bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translati

    7、on under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgar

    8、ia, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turk

    9、ey and United Kingdom. CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2014 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for CENELEC Members. Ref. No. EN 16603-50-05:2014 EBS EN 16603-50-05:2014EN 16603-50-05:201

    10、4 (E) 2 Table of contents Foreword 6 Introduction 7 1 Scope . 8 2 Normative references . 9 3 Terms, definitions and abbreviated terms 10 3.1 Terms from other standards 10 3.2 Terms specific to the present standard . 10 3.3 Abbreviated terms. 12 4 Frequency allocations, assignment and use . 15 4.1 Fr

    11、equency allocations to the Space Operation, Space Research and Earth Exploration-Satellite services 15 4.1.1 Overview . 15 4.1.2 Frequency bands allocated to the Space Radiocommunications services . 15 4.2 Specific conditions for the use of certain frequency bands 17 4.2.1 2 025 MHz 2 120 MHz and 2

    12、200 MHz 2 300 MHz bands . 17 4.2.2 8 025 MHz 8 400 MHz band . 18 4.2.3 8 400 MHz - 8 450 MHz band . 19 4.2.4 8 450 MHz 8 500 MHz band . 19 4.2.5 25,5 GHz 27,0 GHz, 37,0 GHz 38 GHz and 40,0 GHz 40,5 GHz bands 19 4.3 Frequency assignment procedure . 20 4.3.1 Choice of frequencies . 20 4.3.2 Advance pu

    13、blication, coordination and notification of frequencies . 21 5 Transmitted signals 22 5.1 Turnaround frequency ratio for coherent transponders . 22 5.1.1 Generation of the transmitted carrier . 22 5.1.2 Band pairs . 22 5.2 Carrier frequency stability . 24 5.2.1 Spacecraft transmitter . 24 BS EN 1660

    14、3-50-05:2014EN 16603-50-05:2014 (E) 3 5.2.2 Spacecraft receiver . 25 5.2.3 Ground station equipment . 25 5.3 Polarization . 26 5.4 Occupied bandwidth considerations . 26 5.5 Emissions . 28 5.5.1 Unwanted emission power level 28 5.5.2 Cessation of emissions . 32 5.5.3 Power flux density limits at the

    15、 Earths surface 32 5.5.4 Power flux density limits at the GSO in the 25,5 GHz - 27,0 GHz band . 33 5.5.5 Power limits for Earth station emissions 34 5.5.6 Time limitations on transmissions 35 6 Modulation 36 6.1 Phase modulation with residual carriers 36 6.1.1 Application 36 6.1.2 Modulating wavefor

    16、ms 36 6.1.3 PCM waveforms and data rates 37 6.1.4 Use of subcarriers . 39 6.1.5 Data transition density . 41 6.1.6 Carrier modulation index . 42 6.1.7 Sense of modulation . 42 6.1.8 Modulation linearity . 42 6.1.9 Residual amplitude modulation . 42 6.1.10 Carrier phase noise . 43 6.1.11 Residual car

    17、rier, out-of-band emission and discrete spectral lines 43 6.2 Suppressed carrier modulation,44 6.2.1 Application and modulation schemes 44 6.2.2 Modulating waveforms 45 6.2.3 Carrier modulation. 45 6.2.4 Data transition density . 51 6.2.5 Symbol rate stability 51 6.2.6 Carrier phase noise . 51 6.2.7

    18、 Carrier suppression, out-of-band emission and discrete spectral lines 51 6.3 Spectral roll-off . 52 7 Link acquisition procedures 53 7.1 Space-Earth 53 7.1.1 Normal operation 53 BS EN 16603-50-05:2014EN 16603-50-05:2014 (E) 4 7.1.2 Alternative mode of operation . 53 7.1.3 Coherent mode . 53 7.2 Ear

    19、th-space 54 7.2.1 2 025 MHz - 2 110 MHz category A 54 7.2.2 2 110 MHz - 2 120 MHz category B 55 7.2.3 7 145 MHz - 7 190 MHz category B 55 7.2.4 7 190 MHz 7 235 MHz category A 55 8 RF interface control 57 8.1 RF interface control documents 57 8.2 Spacecraft-Earth station interface control document .

    20、57 8.2.1 Overview . 57 8.2.2 Process . 57 8.3 Link budget tables. 58 8.3.1 General . 58 8.3.2 Parameters . 58 8.4 Spacecraft-ground network compatibility test 61 9 GMSK and 8PSK TCM modulation formats 63 9.1 GMSK modulation format 63 9.2 8PSK TCM modulation format 64 9.2.1 General principles . 64 9.

    21、2.2 4 dimensional 8PSK-TCM encoder . 64 9.2.3 Differential encoders for SEF = 2 and 2,5 65 9.2.4 Trellis encoder structure 66 9.2.5 Constellation mapper for 4 dimensional 8PSK-TCM 66 9.2.6 Channel filtering 68 Annex A (normative) Spacecraft-Earth station interface control document - DRD 71 Annex B (

    22、informative) Cross-support from other networks 72 Annex C (informative) Protection of Ariane-5 RF system 73 Annex D (informative) Differences from CCSDS recommendations . 76 Annex E (informative) Tailoring guidelines . 78 Bibliography . 79 BS EN 16603-50-05:2014EN 16603-50-05:2014 (E) 5 Figures Figu

    23、re 4-1: Maximum allowable bandwidth in the band 8 400 MHz - 8 450 MHz 20 Figure 6-1: PCM waveforms and symbol duration definition . 38 Figure 6-2: Symbol rate reference point . 39 Figure 6-3: QPSK/OQPSK constellation mapping 46 Figure 6-4: OQPSK post-amplifier filter transfer function 49 Figure 6-5:

    24、 Spectral emission masks for telemetry transmission at symbol rates above 60 ksps 52 Figure 8-1: Parameter distributions and their equations 60 Figure 9-1: General principle of the 4D-8PSK TCM modulator . 65 Figure 9-2: Codes to eliminate 22,5 phase ambiguity on carrier synchronization 66 Figure 9-3

    25、: Representation of a 64 state L=7, rate 3/4 systematic trellis encoder . 66 Figure 9-4: Constellation mapper for SEF = 2. 67 Figure 9-5: Constellation mapper for SEF = 2,5 67 Figure 9-6: Transmit structure for baseband, square root raised-cosine shaping 69 Figure 9-7: Transfer function for a 4 pole

    26、s/2 zeros elliptic filter . 69 Figure 9-8: Transmit structure for post-amplifier shaping 70 Tables Table 4-1: Frequency allocations to the Space Operation, Space Research and Earth Exploration-Satellite services . 16 Table 5-1: Turnaround frequency ratios for coherent transponder operation 23 Table

    27、5-2 Alternative turnaround frequency ratios for coherent transponder operation . 24 Table 5-3: Frequency stability for spacecraft transmitters . 24 Table 5-4: Frequency stability for spacecraft receivers . 25 Table 5-5: Occupied bandwidth 27 Table 5-6: Maximum level of spurious emissions 28 Table 5-

    28、7: Threshold levels of interference detrimental to radio astronomy spectral line (i.e. narrow bandwidth) observations at the surface of the Earth due to terrestrial interference sources (Recommendation ITU-R RA.769-2) 30 Table 5-8: Threshold levels of interference detrimental to radio astronomy cont

    29、inuum (i.e. wide bandwidth) observations at the surface of the Earth due to terrestrial interference sources (Recommendation ITU-R RA.769-2) 31 Table 5-9: Harmful interference levels at deep space antenna sites . 32 Table 5-10: Power flux density limits at the Earths surface 33 Table 6-1: PCM wavefo

    30、rms and rates for residual carrier modulation . 37 Table 6-2: Subcarriers used with phase-modulated carriers . 39 Table 6-3: Limits of the peak modulation index . 42 Table 6-4: PCM waveforms 45 Table 8-1: Probability density functions for link budgets . 60 BS EN 16603-50-05:2014EN 16603-50-05:2014 (

    31、E) 6 Foreword This document (EN 16603-50-05:2014) has been prepared by Technical Committee CEN/CLC/TC 5 “Space”, the secretariat of which is held by DIN. This standard (EN 16603-50-05:2014) originates from ECSS-E-ST-50-05C Rev. 2. This European Standard shall be given the status of a national standa

    32、rd, either by publication of an identical text or by endorsement, at the latest by March 2015, and conflicting national standards shall be withdrawn at the latest by March 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN

    33、and/or CENELEC shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association. This document has been developed to cover specifically space systems and has th

    34、erefore precedence over any EN covering the same scope but with a wider domain of applicability (e.g. : aerospace). According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulg

    35、aria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Tu

    36、rkey and the United Kingdom. BS EN 16603-50-05:2014EN 16603-50-05:2014 (E) 7 Introduction This Standard contains requirements to ensure the following: Compatibility of frequency usage and modulation schemes between space agencies spacecraft and Earth stations for the Space Operation, Space Research

    37、and Earth Exploration-Satellite services. Compatibility between the spacecraft and the networks that they interact with, as far as possible. Standardization of frequency usage and modulation schemes within the space projects. Conformity of spacecraft and Earth station parameters to international rad

    38、io regulatory provisions (Radio Regulations of the International Telecommunication Union (ITU) and with national regulatory provisions (e.g. national frequency plans). Selection of the appropriate parameters of spacecraft and Earth stations that are listed in advance of their use, thus enabling coor

    39、dination with other interested parties. Optimization of the frequency usage and modulation schemes within the above limitation. BS EN 16603-50-05:2014EN 16603-50-05:2014 (E) 8 1 Scope This Standard defines the radio communication techniques used for the transfer of information between spacecraft and

    40、 Earth stations in both directions, and for the tracking systems used for orbit determination. It includes the following: frequency allocation, assignment and use; requirements on transmitted signals concerning, for example, spectral occupation, RF power levels, protection of other radio services; d

    41、efinition of the permissible modulation methods and parameters; specification of the major technical requirements relevant for the interface between spacecraft and Earth stations; operational aspects, such as acquisition; cross-support. This Standard is applicable to all spacecraft supported by Eart

    42、h stations1and to all controlled Earth stations operating in the Space Operation, Space Research and Earth Exploration-Satellite services as defined in the ITU Radio Regulations.2Other space telecommunication services are not covered in this issue. All requirements in this Standard are equally appli

    43、cable to both the customer and the supplier with exception of clauses 4.3.1 and 4.3.2 which are applicable to the customer only. Further provisions and guidance on the application of this Standard can be found, respectively, in ECSS-E-ST-50 “Communications“, and in the handbook ECSS-E-HB-50A “Commun

    44、ications guidelines“. ECSS-E-ST-50 defines the principle characteristics of communication protocols and related services for all communication layers relevant for space communication (physical- to application-layer), and their basic relationship to each other. The handbook ECSS-E-HB-50 provides info

    45、rmation on specific implementation characteristics of these protocols in order to support the choice of a certain communications profile for the specific requirements of a space mission. Users of the present standard are invited to consult these documents before taking decisions on the implementatio

    46、n of the present one. This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S-ST-00. 1This Standard is not applicable to spacecraft supported by data relay satellites. 2Under the term Earth Exploration-Satellite service, the Meteor

    47、ological Satellite service is also included. BS EN 16603-50-05:2014EN 16603-50-05:2014 (E) 9 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to,

    48、 or revisions of any of these publications, do not apply. However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references the latest edition of the publica

    49、tion referred to applies. EN reference Reference in text Title EN 16601-00-01 ECSS-S-ST-00-01 ECSS system Glossary of terms EN 16603-10-03 ECSS-E-ST-10-03 Space engineering Testing EN 16603-50 ECSS-E-ST-50 Space engineering Communications EN 16603-50-01 ECSS-E-ST-50-01 Space engineering Space data links - Telemetry synchronization and channel coding ITU/RR:2004 3,4 ITU Radio Regulations 3In this Standard the relevant articles are specified after the reference name. For example, ITU/RR/1.23 refers to Article 1.23. 4For possible cha


    注意事项

    本文(EN 16603-50-05-2014 en Space engineering - Radio frequency and modulation《航天工程 无线电频率及调整》.pdf)为本站会员(dealItalian200)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开