欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    DOD MIL-STD-600001-1990 MAPPING CHARTING AND GEODESY ACCURACY《地图 海图和测量学精确性》.pdf

    • 资源ID:701853       资源大小:1.25MB        全文页数:53页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    DOD MIL-STD-600001-1990 MAPPING CHARTING AND GEODESY ACCURACY《地图 海图和测量学精确性》.pdf

    1、0 AMSC NIA MIL-STD-600002 MC m 7777722 008B412 i m pTiiq MI L-STD-600001 26 FEBRUARY 1990 MILITARY STANDARD MAPPING, CHARTING distribution is unlimited. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MIL-STD-600001 MC 77777LL 0088L112 6 MI L-STD-600

    2、00 1 FOREWORD 1. This military standard is approved for use by all Departments and Agencies of the Department of Defense. 2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Director, Defense Map

    3、pingAgency,AlTN: PR, 861 3 Lee Highway, Fairfax, VA 22031 -21 37 by using the self-addressed Standardization Document Improvement Proposal (DD Form 1 426) appearing at the end of this document or by letter; II Provided by IHSNot for ResaleNo reproduction or networking permitted without license from

    4、IHS-,-,-CONTENTS PARAG RAPH PAGE 1 . 1 . 1 1.2 1.3 2 . 2.1 2.1.1 2.1.2 2.2 2.3 3 . 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4 . 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.5 4.6 5 . 5.1 5.2 SCOPE . Scope . Purpose Applicability APPLICABLE DOCUMENTS Government documents . Specifications. standards. and handbooks . Other Go

    5、vernment documents. drawings. and publications Non-Government publications Order of precedence DEFINITIONS . Absolute horizontal accuracy . Absolute vertical accuracy . Accu racy Datum (geodesy) Random error . Relative horizontal accuracy (point-to-point) Relative vertical accuracy (point-to-point)

    6、Systematic error . GEN E RAL REQU i RE ME NTS . Intended use of accuracy . Accu racy requi remen ts . Accu racy requirement de fi ni ti on . Formulas (sim pl if ied) Circular error Li near error . Selection of normal distribution Accuracy note DETAILED REQUIREMENTS . General A bso I u t e accu racy

    7、2 2 2 2 2 2 7 7 7 iii Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-PARAGRAPH 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 6 . 6.1 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 MIL-STD-600001 CONTENTS Relative accu racy . Point positio

    8、ns Variance-covariance matrix Error propagation relating to triangulation Application of triangulation output . Error propagation from sample statistics Sample statistics when the diagnostic and product errors are independent . Sample statistics when the diagnostic and product errors are dependent S

    9、ummary of sample statistics methodology . Absolute accu racy com put at ions . Point-to-point relative accuracy computations . Alternate error propagation from sample statistics . Accuracy influenced by bias . NOTES Intended use . International standardization agreements I n t e r n at ion al St and

    10、ardizat io n Ag ree m e nts (STAN AGs) Quadripartite Standardization Agreements (QSTAGs) . Air Standardization Coordinating Committee International MC and to all levels involved in the preparation, maintenance of MC = sample standard deviation (meters) 1.645 = normal deviate for 90% confidence level

    11、 4.5 Selection of normal distribution. The normal distribution function was selected since it closely fits the actual observed frequency distributions of many physical measure- ments and natural phenomena. In addition it makes error analysis a more tractable prob le m. 4.6 Accuracv Note. MC but is s

    12、till stated in terms of a horizontal component and a vertical component. As in the case with absolute accuracy, the horizon- tal uncertainty is stated as a CE and the vertical error is stated as a LE. 5.4 Point pos itions. Point positions derived from measurements of photographic images are usually

    13、referenced to an earth fixed Cartesion coordinate system. Avariance- covariance matrix defining the uncertainty of this computed position relative to this coordi- nate system is determined by standard error propagation techniques utilizing apriori esti- mates of errors associated with the computatio

    14、nal parameters. The apriori estimates of the errors associated with these computational parameters are usually in the form of avariance- covariance matrix and includes all of the covariances resulting from the correlation of the parameters. The parameter variance-covariance matrices used to assess p

    15、roduct accura- cies result from (1) statistics accumulated from redundant observations of the parameters, or (2) statistics propagated through computations required to determine the parameters from redundant indirect observations. An example of such computations are those required to accomplish leas

    16、t squares triangulation to update exposure station positions and camera attitudes. 7 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MIL-STD-600001 5.5 Variance-covariance matrix. A primary goal of any evaluation scheme should be the construction of

    17、the variance-covariance matrix associated with any position depicted in the product. The generation of such matrices will likely utilize standard error propagation techniques andor sample statistics resulting from the comparison of positions extracted from the product to their known positions. Such

    18、points are referred to as diagnostic points. Ultimately the success of any evaluation method depends on its ability to approximate these variance-covariance matrices. The variance-covariance matrix relating the errors of two geographic positions will be defined. This is followed by a summary of meth

    19、ods used in the determination of this matrix in various circumstances. Finally, the computation of the absolute CE and LE and the relative point-to-point CE and LE is presented. To define acovariance matrixconsidertwovectors, denoted by U and V, whosecomponents are random variables. The cross-covari

    20、ance of the two vectors is defined by where E is the expectation of the random variable and is defined as the sum of all values the random variable may take, each weighted by the probability of its occurrence. lhe covariance of U is when U = V. Suppose that the geographic position of two points, and

    21、 their cross-covariance matrix has been determined. Let the two positions be denoted by ($, h, h, ) and ($, h, h, ) Let their cross-covariance matrix be denoted by Q such that I PI I II Q= Q22 7 where Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-M

    22、IL-STD-600003 MC W 9777733 0088424 2 W M I L- ST D-60 O O O 1 where 2 is the variance of $, etc ., is the covariance of $ and hi, etc. and Methods for the determination of the cross-covariance matrix Q will be considered. These methods, intended as guidelines only, are somewhat generalized in the se

    23、nse that they are not presented in terms of any one product. Two methods are presented; the first based on the statistics output from triangulation; the second based on a comparison of positions sampled from the product to known or diagnostic positions. 5.6 Error OroDaaation relatina to trianaulatio

    24、n. First consider the case involving trian- gulation. It is not within the scope of this standard to present an exhaustive development of triangulation mathematics. Hopefully, enough for clarity and understanding is presented. The condition equations are assumed to be of the form A(L + V) + BA = D w

    25、here A and B are coefficient matrices, D is a vector of constants, 9 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MIL-STD-600001 L is a vector of observations, V is a vector of residuals, and A is a vector of parameters usually referred to as the

    26、state vector In addition, define Q, as the covariance matrix associated with the observational wector L and define W as the observational weight matrix, that is, W = Q:, A few words relative to the observations and state vector regarding their respective weights are in order. Assume that the unknown

    27、 state vector, A, has an initial value that results from an observational reduction process and thus can be treated as part of the observations, L. Thus, any theoretical error propagation scheme used to estimate triangulation output accuracies depends heavily on apriori covariances associated with t

    28、he observations or associated with parameters treated as observations. The Covariance matrices resulting from triangulation are considered acceptable if a reference variance computed from the residuals is believable. Define this reference variance as where R is the degrees of freedom associated with

    29、 the least squares adjustment. Since the weight matrix is the inverse of the observational covariance matrix, the reference variance is in variance units and will be near unity in value. In fact is sometimes referred toas the unit variance. If the unit variance is not close to unity, it becomes diff

    30、icult to give much credibility to the subsequent error propagation. Rearrange the condition equations so that the form is AV+BA = F with F=D-AL. The least squares solution is defined as that solution which minimizes the function 10 Provided by IHSNot for ResaleNo reproduction or networking permitted

    31、 without license from IHS-,-,-M IL-STD-60000 1 4 = VTWV - 2KT(AV + BA - F) with respect to V and A. The vector K is the Lagrange multipliers which accomplishes this minimization. Therefore, to mimimize 0, must be satisfied. Thus, aqtav = VTW - KTA = o, and aqm = -28 = o along with the condition equa

    32、tions forms the system of equations WV - ATK = O, AV+BA = F,and BTK = O which must be solved for V, K and A. It can be shown that the solution is given by V = QLLATK, K = (AQLLAT)- /F - BA), and A = BT( AQLLAT)- BI- BT( AQLLAT)- F. Let N = BT(AQLLAT)-B 11 Provided by IHSNot for ResaleNo reproduction

    33、 or networking permitted without license from IHS-,-,-_I -_- - _-_ MIL-STD-b00003 MC 7777733 0088427 m MI L-STO-60000 I and T = BT(AQLLAT)-F. The normal equations can be written as NA=T so that A = NT. The covariance matrix associated with the parameter A is determined by using the covariance propag

    34、ation rule Qu = JALQLLJL where J = amL. Since A = N- BT(AQLLAT)- (O - AL), it follows that JA, = N- BT(AQLLAT)- (-A) and QM = -N- BT(AQLLAT)” AQLL-N- BT(AQLLAT)- AlT which simplifies to Q, = N-. 12 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- MIL

    35、-STD-600001 MC 7777711 0088Li28 T m- MIL-STD-600001 It is often true that not all of the parameters in the state vector, A, are used for the development of a product. For example, the state vector may include both ground positions and sensor related parameters. Some products may be developed using o

    36、nly the ground positions, while others may also utilize the sensor parameters. To understand this situation suppose that the state vector can be written as A = ;al and the corresponding condition equations become AV + Bi + B = F which can be written as AV+BrA =F. As before the normal equations, with

    37、 . B=B BI have the form (AQLLAT)- b B To simplify the notation let We = (AQLLAT)- thus BTWeB BTWeB BTWeB BTWeB 3- BTWeF BTWeF 1 . 13 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MIL-STD-600001 Let N=BweB , N=BW,B , - N=BWeB , f=BTWeF ,and T=BTWeF

    38、, then the normal equations are Next, solve ford and and determine Qz and Qz , their respective covariance matrices. The normal equation can be written as Ni + ;i = j- (FIGURE 7) Equation (figure 7) yields = - Ni) which when substituted into equation (figure 8), yields which reduces to I.-.- .I - (F

    39、IGURE 8) Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-MIL-STD-b00003 MC 7779733 0088Lt30 8 MIL-STD-600001 The covariance propagation rule states that Likewise, solve for 3 using equation (figure 8), that is, - . = N-l(T - NTA) which, when substitu

    40、ted into equation (figure 7), becomes - - NA + NN-l(T - NTi) = i which reduces to . - . - =(N - NN-lNT)-l(BT- NN-lBT)WeF. The covariance matrix associated with is given by thus . - - . _ Q, = (N - NN-NT)- ( BT - NN- BT)WeAQLLA - - - x (N - NN-lNT)-l (BT- NN-lBT)WJT 15 Provided by IHSNot for ResaleNo

    41、 reproduction or networking permitted without license from IHS-,-,-il IL - S TD - b O O O O L MC-%7 9FE1iO G? 3 Lr E M I L- ST D-60 O O O 1 which simplifies to . - - Q; = (N-NN-NT)-. It will now be shown that these expressions for Q; and Q, correspond to the partitions of N-l. Assume that A = MT, th

    42、at is - which means that -7 -1 1 O O 1 which, when expanded, gives the four equations NM + “IT= 1, ._ - NM + NM= O, -. NTM + N = O, and - - NTM + NM = I. Equation (figure 11) can be rearranged so that (FIGURE 9) (FIGURE IO) (FIGURE 11) (FIGURE 12) which, when substituted into equation (figure 9) giv

    43、es NG + N(-M-INTr;/l) = 1 16 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-M IL-STD-60000 1 which, solving for M, gives Likewise, equation (figure 1 O), when rearranged, gives . - i = -N-INM which, when substituted into equation (figure 12) and sol

    44、ving for M yields -. - M = (i - NTN-IN)-l. Thus it has been shown that and Q,= M. A typical method of reducing the dimension of the matrix to be inverted is to “fold“ the normal equations. This is accomplished by eliminating some of the parameters from the state vector. Assume that the normal equati

    45、ons are partitioned as before, that is which when expanded gives the two equations . . - . NA+NA=T and -. NTA + NA = T. (FIGURE 13) (FIGURE 14) “Folding“ is accomplished by solving equation (figure 14) for and then substituting the resulting expression into equation (figure 13) and solving for . The

    46、 resulting expression is called the folded normal equations; that is, 17 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,- MIL-STD-6000NC , is given by the same expression as in the unfolded case, that is, Q, = M. Since - = M (i - NN-lT), substitution

    47、 for i and 7 gives - = M (BT - NN-IBT)We(D - AL). Using the covariance propagation rule and the fact that aj M-i thus, .which reduces to as in the unfolded case. 5.7 Amlication of trianaulation outwt. For the purpose of applying this information to product evaluation, it is assumed that the vector h

    48、as as its components ground location coordinates which are to be used as diagnostic control points by the production organiza- tion. The covariance matrices for and are given by Q, and Q, , respectively. It should be noted that the organization generating some specific product may not use sensor parameters, that is, the Organization will not be supplied with the vector . Those organizations that require sensor paramaters have two possible sources, either the output of triangulation in the form of aposteriori


    注意事项

    本文(DOD MIL-STD-600001-1990 MAPPING CHARTING AND GEODESY ACCURACY《地图 海图和测量学精确性》.pdf)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开