欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ATIS 0100037-2013 Impact Weighted MTBF C A Metric for Assessing Reliability of Hierarchical Systems.pdf

    • 资源ID:540867       资源大小:258.69KB        全文页数:16页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ATIS 0100037-2013 Impact Weighted MTBF C A Metric for Assessing Reliability of Hierarchical Systems.pdf

    1、 AMERICAN NATIONAL STANDARD FOR TELECOMMUNICATIONS ATIS-0100037.2013 IMPACT WEIGHTED MTBF A METRIC FOR ASSESSING RELIABILITY OF HIERARCHICAL SYSTEMS As a leading technology and solutions development organization, ATIS brings together the top global ICT companies to advance the industrys most-pressin

    2、g business priorities. Through ATIS committees and forums, nearly 200 companies address cloud services, device solutions, emergency services, M2M communications, cyber security, ehealth, network evolution, quality of service, billing support, operations, and more. These priorities follow a fast-trac

    3、k development lifecycle from design and innovation through solutions that include standards, specifications, requirements, business use cases, software toolkits, and interoperability testing. ATIS is accredited by the American National Standards Institute (ANSI). ATIS is the North American Organizat

    4、ional Partner for the 3rd Generation Partnership Project (3GPP), a founding Partner of oneM2M, a member and major U.S. contributor to the International Telecommunication Union (ITU) Radio and Telecommunications sectors, and a member of the Inter-American Telecommunication Commission (CITEL). For mor

    5、e information, visit . AMERICAN NATIONAL STANDARD Approval of an American National Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI B

    6、oard of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be

    7、made towards their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming

    8、to the standards. The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name

    9、of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard. CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American

    10、National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute. Notice of Disclaimer Leve

    11、l 2: Mobile Telephone SwitchOffice (MTSO) Aggregation Pair; Level 3: Provider Edge (PE) PairRedundancy or silent failure in Aggregation pair affects K eNBs connected to it.Redundancy or silent failure in PE pair affects N eNBs; NK.Level 1 Level 2 Level 34G LTE Network SegmentFigure 4 - 4G LTE Segmen

    12、t Architecture 7 Definition of Impact Weighted MTBF Consider a system that consists of three subsystems with increasing hierarchical levels 1, 2, 3i . In general, all subsystems are redundant. Only traffic-impacting failures which occur due to the limitations of the adopted redundancy are counted. L

    13、et N be the number of elements in subsystem 1. The failure impact of an element in subsystem 1 is: 0 If the redundancy protects against that failure. 1 Otherwise. However, the failure impact of the highest-level subsystem is N because it impacts all elements in subsystem 1. The impact of a failure o

    14、f a subsystem at level 2 is the number of elements K in subsystem 1 that are connected to it. For subsystem 1, 2, 3i , the mean time until the first customer impacting failure starting at a state where all active and redundant elements of subsystem null are “up”, is referred to as level null uptime

    15、nullnull. Then the IW-MTBF metric is defined as nullnullnullnullnullnull_nullnullnullnull null nullnullnullnullnullnull nullnull nullnull nullnullnullnullnull(1) ATIS-0100037.2013 9 Note that level-2 subsystem may consist of several components like in the case of single chassis router (two component

    16、s a pair of RPs and SW) or RNC (three components three pairs of IPs, MPs, and fabrics). For component 1, 2, ,jm, the mean time until the first customer impacting failure at a state where all active and redundant elements of component null are “Up”, is referred to as component null Uptime nullnullnul

    17、l . Let the failure of each component impact the same number of elements K in level-1 subsystem. Then level-2 Uptime is calculated as nullnullnull nullnullnullnullnullnullnullnullnullnullnullnullnullnullnull2null Level-3 uptime is similarly calculated in case of several components and failure of eac

    18、h component impacts the same number of elements N in level-1 subsystem. It is not difficult to generalize this example to a hierarchy with a greater number of levels. 8 Impact Weighted MTBF Practical Examples This clause illustrates the benefits of the IW-MTBF metric for hierarchical systems conside

    19、red in clause 6 through numerical example using for calculation of level-2 Uptime and IF-MTBF equations (2) and (1), respectively. The time is measured in hours. 8.1 Single Chassis Router Consider a router in Figure 1 with 10K line cards carrying customer traffic. Table 1 provides reduction in IW-MT

    20、BF in comparison with line-card (LC) MTBF due to failures of level-2 subsystem consisting of two redundant components: RP and SF. Level-2 uptime is calculated in Table 2 using given uptimes for RP and SF. The expectation is that failures of RP and SF components should have minimal impact on line car

    21、ds. In our example, it is indeed the case when LC-MTBF is low (50,000 hours). However for LC-MTBF=150,000, the reduction of 25% is quite large. The only way to have a smaller reduction is to increase the uptime for RP and SF components. Table 1 - IW-MTBF Reduction in Comparison with LC-MTBF Reductio

    22、n % 10% 18% 25% IW-MTBF 44,944 81,633 112,150 LC-MTBF 50,000 100,000 150,000 Table 2 - Uptime for RP, SF, and Level 2 Component RP SF Level 2 Uptime 10,000,000 8,000,000 4,444,444 Consider a set of routers with architecture given in Figure 1 where RP and SW subsystems and the number K of line cards

    23、are the same for all routers. Then MTBO measured in production for this set of routers would be a field estimate of IW-MTBF where the latter was calculated based on expected uptime of RP and SW components. ATIS-0100037.2013 10 8.2 Multi-chassis Router Consider a router with 6L line-card chassis (LCC

    24、), with 15 line cards per each LCC (16)K and the total number of line cards 615 90.N Each LCC has two RPs and six LCCs are interconnected by fabric. Table 3 provides reduction in IW-MTBF in comparison with line-card LC-MTBF=300,000 hours due to failures of level-2 RP-subsystem and level-3 fabric sub

    25、system. The IW-MTBF and respective reduction are calculated for RP-Uptime=100,000,000 hours. Note that FCC-Uptime has major impact on Reduction. Reduction decreases from 98% for FCC-Uptime=500,000 hours to 21% for FCC-Uptime=125,000,000 hours. However, even 21% Reduction is not low enough that empha

    26、sizes the importance of significantly high FCC-Uptime in multi-chassis router. Table 3 - G-Uptime Reduction in Comparison with LC-MTBF Router A B C Reduction % 21% 37% 98% IW-MTBF 237,906 189,274 5,450 FCC-Uptime 125,000,000 50,000,000 500,000 Consider a set of multi-chassis routers with architectur

    27、e given in Figure 2 where RP and FCC subsystems as well as the number of chassis L and the number N of line cards are the same for all routers. Then MTBO measured in production for this set of routers would be a field estimate of IW-MTBF where the latter was calculated based on expected uptime of RP

    28、 and FCC subsystems. Routers may have the same line cards and RPs in single-chassis and multi-chassis configurations. However, their IW-MTBF values will be generally different for the following two reasons. First, the FCC is more complex than SF in single-chassis routers that may result in lower FCC

    29、-Uptime. Second, the impact of FCC failure in multi-chassis routers is generally larger than the impact of SW failure in single-chassis routers. Therefore, the MTBO calculation for the combined set of single- and multi-chassis routers would likely underestimate the IW-MTBF for single chassis routers

    30、 and overestimate the IW-MTBF for multi-chassis routers. In addition, the IP backbone may have a hierarchical design with largest multi-chassis routers at the top of the hierarchy. In such a case, actual failure impact depends on the router place in the hierarchy. Hence, the existing formula for MTB

    31、O calculation based on the number of affected line cards can be applied only to the set of routers at the same hierarchical level. 8.3 Radio Network Controller Consider an RNC with 8K call processors (CPs). Table 4 provides reduction in IW-MTBF in comparison with CP-subsystem uptime (CP-Uptime) due

    32、to failures of level-2 subsystem caused by redundancy failures in MP, IP or SF component in level 2. Uptimes for MP, IP, and SF along with Level 2 uptime calculated using (2) are provide in Table 5. The Reduction is quite large (in the range 47% - 57%) that indicates that the uptime for level 2 comp

    33、onents is not large enough. Table 4 - IW-MTBF Reduction in Comparison with CP-Uptime Reduction % 47% 53% 57% IW-MTBF 423,529 473,684 514,286 CP-Uptime 800,000 1,000,000 1,200,000 ATIS-0100037.2013 11 Table 5 - Uptime for MP, IP, SF, and L2-Uptime Component MP IP SF Level 2 Uptime 20,000,000 18,000,0

    34、00 30,000,000 7,200,000 Consider a set of RNCs with architecture given in Figure 2 and the same number of CPs. Then MTBO measured in production using one CP as a unit of failure impact would be a field estimate of IW-MTBF where the latter was calculated based on expected uptime of IP, MP and fabric

    35、components. The impact of RNC failure can be measured more granularly by the number of affected base stations (nodeBs). Then IW-MTBF and its MTBO estimate in production must be compared with nodeB-Uptime. 8.4 Access Segment of LTE Network Consider a network segment in Figure 4 with parameter values

    36、90N and 15.K Table 6 provides reduction in IW-MTBF in comparison with eNB uptime of 10,000 hours due to failures of Aggregation routers (level-2 subsystem) and PE routers (level-3 subsystem). As expected, the reduction increases as Aggregation-Uptime and PE-Uptime decreases. Table 6 - G-Uptime Reduc

    37、tion in Comparison with eNB-Uptime Reduction % 14% 25% 40% G-Uptime 8,562 7,485 5,981 Aggregation-Uptime 2,000,000 1,000,000 500,000 PE-Uptime 10,000,000 5,000,000 2,500,000 Consider an access segment of LTE (4G) network with interconnection architecture shown in Figure 4 where routers are identical

    38、 in terms of their architecture and vendor inside each of two sets of Aggregation and PE routers. In general, there could be two different vendors for Aggregation and PE routers respectively. By selecting an eNB (evolved node B) as an impact unit for failure in Aggregation and PE levels, the MTBO me

    39、asured in a production network with architecture in Figure 4 will be an estimate of IW-MTBF. 9 Concluding Remarks Examples in clauses 8.1 through 8.4 demonstrate a fairly broad application of the new metric IW-MTBF that incorporates the hierarchical structure of network elements and segments. The ap

    40、plication of IW-MTBF requires knowledge of the Uptime for redundant subsystems at the upper hierarchical levels. For sufficiently large coverage factor exceeding 99%, the Uptime of a redundant system is very close to mean time between silent failures (MTBSF). Thus the knowledge of MTBSF is critical for application of IW-MBTF. For a brand new system, MTBSF can be provided only by its vendor similar to predicted MTBF for systems component. MTBSF can be also measured in production but the observation interval must be fairly large e.g., 18-24 months as silent failures are expected to be rare.


    注意事项

    本文(ATIS 0100037-2013 Impact Weighted MTBF C A Metric for Assessing Reliability of Hierarchical Systems.pdf)为本站会员(刘芸)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开