欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM G123-2000(2005) Standard Test Method for Evaluating Stress-Corrosion Cracking of Stainless Alloys with Different Nickel Content in Boiling Acidified Sodium Chloride Solution《沸.pdf

    • 资源ID:540313       资源大小:211.20KB        全文页数:10页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM G123-2000(2005) Standard Test Method for Evaluating Stress-Corrosion Cracking of Stainless Alloys with Different Nickel Content in Boiling Acidified Sodium Chloride Solution《沸.pdf

    1、Designation: G 123 00 (Reapproved 2005)Standard Test Method forEvaluating Stress-Corrosion Cracking of Stainless Alloyswith Different Nickel Content in Boiling Acidified SodiumChloride Solution1This standard is issued under the fixed designation G 123; the number immediately following the designatio

    2、n indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a procedure

    3、 for conductingstress-corrosion cracking tests in an acidified boiling sodiumchloride solution. This test method is performed in 25 % (bymass) sodium chloride acidified to pH 1.5 with phosphoricacid. This test method is concerned primarily with the testsolution and glassware, although a specific sty

    4、le of U-bend testspecimen is suggested.1.2 This test method is designed to provide better correla-tion with chemical process industry experience for stainlesssteels than the more severe boiling magnesium chloride test ofPractice G36. Some stainless steels which have providedsatisfactory service in m

    5、any environments readily crack inPractice G36, but have not cracked during interlaboratorytesting2using this sodium chloride test method.1.3 This boiling sodium chloride test method was used in aninterlaboratory test program to evaluate wrought stainlesssteels, including duplex (ferrite-austenite) s

    6、tainless and analloy with up to about 33 % nickel. It may also be employed toevaluate these types of materials in the cast or weldedconditions.1.4 This test method detects major effects of composition,heat treatment, microstructure, and stress on the susceptibilityof materials to chloride stress-cor

    7、rosion cracking. Small dif-ferences between samples such as heat-to-heat variations of thesame grade are not likely to be detected.1.5 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.6 This standard does not purport to addres

    8、s all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 8.2. Referenced

    9、 Documents2.1 ASTM Standards:3D 1193 Specification for Reagent WaterE8 Test Methods for Tension Testing of Metallic MaterialsE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodG15 Terminology Relating to Corrosion and CorrosionTestingG16 Guide forApplyin

    10、g Statistics toAnalysis of CorrosionDataG30 Practice for Making and Using U-Bend Stress Corro-sion Test SpecimensG36 Practice for Evaluating Stress-Corrosion-CrackingResistance of Metals and Alloys in a Boiling MagnesiumChloride SolutionG49 Practice for Preparation and Use of Direct TensionStress Co

    11、rrosion Test SpecimensG 107 Guide for Formats for Collection and Compilation ofCorrosion Data for Metals for Computerized DatabaseInput3. Terminology3.1 Definitions:3.1.1 For definitions of corrosion-related terms used in thistest method, see Terminology G15.4. Summary of Test Method4.1 Asolution of

    12、 25 % sodium chloride (by mass) in reagentwater is mixed, and the pH is adjusted to 1.5 with phosphoricacid. The solution is boiled and U-bends (or other stressedspecimens) are exposed in fresh solution for successive one-week periods.4.2 The test may be continued for as many weeks asnecessary, but

    13、six weeks (about 1000 h) or less are expected to1This test method is under the jurisdiction of ASTM Committee G01 onCorrosion of Metals and is the direct responsibility of Subcommittee G01.06 onEnvironmentally Assisted Cracking.Current edition approved Oct. 1, 2005. Published October 2005. Originall

    14、yapproved in 1994. Last previous edition approved in 2000 as G 123 00.2Supporting data (including UNS S30400, S31600, S32550, and N08020) havebeen filed at ASTM International Headquarters and may be obtained by requestingResearch Report RR: G01-1013.3For referenced ASTM standards, visit the ASTM web

    15、site, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United Sta

    16、tes.be sufficient to crack susceptible materials. Longer exposuresprovide greater assurance of resistance for those materialswhich do not crack.4.3 It is recommended that samples of a susceptible mate-rial, for example, UNS S30400 or S31600 (Type 304 or Type316 stainless, respectively), be included

    17、as a control whenmore resistant materials are evaluated.5. Significance and Use5.1 This test method is designed to compare alloys and maybe used as one method of screening materials prior to service.In general, this test method is more useful for stainless steelsthan the boiling magnesium chloride t

    18、est of Practice G36. Theboiling magnesium chloride test cracks materials with thenickel levels found in relatively resistant austenitic and duplexstainless steels, thus making comparisons and evaluations formany service environments difficult.5.2 This test method is intended to simulate cracking inw

    19、ater, especially cooling waters that contain chloride. It is notintended to simulate cracking that occurs at high temperatures(greater than 200C or 390F) with chloride or hydroxide.NOTE 1The degree of cracking resistance found in full-immersiontests may not be indicative of that for some service con

    20、ditions comprisingexposure to the water-line or in the vapor phase where chlorides mayconcentrate.5.3 Correlation with service experience should be obtainedwhen possible. Different chloride environments may rankmaterials in a different order.5.4 In interlaboratory testing, this test method crackedan

    21、nealed UNS S30400 and S31600 but not more resistantmaterials, such as annealed duplex stainless steels or highernickel alloys, for example, UNS N08020 (for example 20Cb-34stainless). These more resistant materials are expected to crackwhen exposed to Practice G36as U-bends. Materials whichwithstand

    22、this sodium chloride test for a longer period thanUNS S30400 or S31600 may be candidates for more severeservice applications.5.5 The repeatability and reproducibility data from Section12 and Appendix X1 must be considered prior to use. Inter-laboratory variation in results may be expected as occurs

    23、withmany corrosion tests. Acceptance criteria are not part of thistest method and if needed are to be negotiated by the user andthe producer.6. Apparatus6.1 The glassware used for this test method is shown in Fig.1 and is as follows:6.1.1 Flask1000-mL Erlenmeyer flask with a 45/50ground-glass joint.

    24、6.1.2 Condenser, a four-bulb Allihn condenser with a 45/50ground-glass joint (water-cooled joint suggested), a waterjacket at least 20 cm (8 in.) long anda1to2.5cm(0.4 to 0.95in.) long drip tip is used. (Modified Allihn condensers with nodrip tip and condensers with longer drip tips may producediffe

    25、rent results. These alternate Allihn condenser designs maybe used if control samples of susceptible (for example, UNSS31600) and resistant (for example, UNS N08020) materialsare included in the study.)6.1.3 Hot Plate, capable of maintaining the solution at itsboiling point.7. Reagents7.1 Purity of R

    26、eagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.5Other grades may beused provide

    27、d it is first ascertained that the reagent is ofsufficiently high purity to permit its use without affectingresults.7.2 Purity of WaterSolutions shall be made with water ofpurity conforming to at leastType IVreagent water as specifiedin Specification D 1193 (except that for this method limits forchl

    28、orides and sodium may be ignored).420Cb-3 is a registered trademark of Carpenter Technology Corp., Reading, PA.5Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society

    29、, see Analar Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.FIG. 1 Apparatus Used for Stress-Corrosion Cracking TestG 123 00 (2005)27.3 Sodium Chloride (NaCl)A soluti

    30、on of 25 % NaCl (bymass) acidified to pH 1.5 with phosphoric acid (H3PO4)isused. The solution may be prepared by adding 750 g H2O (750mL) to 250 g NaCl, and adjusting to pH 1.5 with H3PO4.Varying quantities of solution may be prepared and largeramounts may be stored indefinitely in appropriate glass

    31、ware.The pH must be determined prior to each use.8. Hazards8.1 Normal precautions for handling boiling liquid shouldbe observed.8.2 All heating or boiling of the NaCl solution should bedone in an area where personnel are not likely to accidentallybump the flask. A hooded area is preferred.8.3 Minimu

    32、m personal protective equipment for handlingboiling sodium chloride should include safety glasses orgoggles, face shield, laboratory coat, and rubber gloves.(WarningU-bends (and other highly stressed test speci-mens) may be susceptible to high rates of crack propagationand a specimen containing more

    33、 than one crack may splinterinto two or more pieces. This may also occur due to a crackedrestraining bolt. Due to the highly stressed condition in aU-bend specimen, these pieces may leave the specimen at highvelocity and can be dangerous.)9. Test Specimens9.1 U-bends are preferred but other stress c

    34、orrosion crack-ing specimens may be used with this test solution. Thespecimen style chosen should provide sufficient stress to crackless resistant materials (for example, UNS S30400 or S31600)in 1000 h or less). (SeeAnnexA1.) Regardless of the specimenstyle, it is recommended that UNS S30400 or UNS

    35、S31600, orboth, be included as controls.9.2 The test specimen must be thick enough so that theapplied stress does not cause mechanical rupture of lessresistant materials if the cross section is reduced by pitting orgeneral corrosion.9.3 The size of alternate specimens (other than those inAnnex A1) m

    36、ust allow a solution volume to specimen surfacearea ratio of at least 5:1 mL/cm2(33 mL/in.2).9.4 Aminimum of four replicates (two per flask) is requiredbecause of the variability typical in stress-corrosion testing.9.5 Methods of fabricating U-bend specimens are providedinAnnexA1. These procedures a

    37、re based on Practice G30, butin addition provide a specimen that fits through a 45/50ground-glass joint. Assurance that the legs are stressed suffi-ciently by the bolt is also provided.9.5.1 Other methods of producing U-bends described inPractice G30 may be used; however, during exposure theU-bends

    38、must be (1) in the plastic range and (2) stressed to themaximum applied tensile load experienced during fabrication.The same method must be used to fabricate all the U-bends ina given study.9.5.2 The bolt, nut, and flat washer must be made of amaterial resistant to general corrosion, pitting, and st

    39、resscorrosion cracking in the environment. UNS N10276 (AlloyC-276) is recommended because some other materials (forexample, titanium or UNS N06600 Alloy 600) may beattacked resulting in an increase in solution pH.9.5.3 The metallic fastener must be electrically isolatedfrom the specimen by a rigid s

    40、houlder washer (that is, zirconiaor another material that will not be compressed during the test).9.5.4 The extended end of the bolt may require cutting to fitinto the test vessel.10. Procedure10.1 Stress the specimens, examine at 203, and replace anyspecimens with cracks or other defects.NOTE 2The

    41、direction and intensity of the incident light may affectcrack detection during the 203 examination.10.2 Degrease in a halogen-free solvent or laboratory deter-gent, rinse as necessary, and dry. It is best practice to stress thespecimens immediately before the beginning of the test. Anystorage of the

    42、 specimens should be in a clean enclosure. Adesiccant such as silica gel may be used. The specific level ofrelative humidity is not important for the alloys of interest.10.3 Place duplicate specimens in each 1000-mL Erlenm-eyer flask. Duplicate flasks (four specimens) are necessary toevaluate a give

    43、n sample of the specific material, materialcondition, etc. (The specimens may be placed in the flasks afterthe solution has been added, if convenient.)10.4 The specimens in each flask must be kept separate andcompletely submerged. Tight crevices between the stressed(bend) area and any means of speci

    44、men support should beavoided. The stressed area should be free from direct contactwith heated surfaces. Specimens may be supported on glassrods or tubes or by glass fixtures.10.5 Drop boiling chips6into the flasks.10.6 Add 600 mL of 25 % NaCl solution, pH 1.5, to eachflask. When each flask contains

    45、two U-bends as described inAnnex A1, the solution volume to sample surface area ratio is5:1 mL/cm2(33 mL/in.2).10.7 Place the flasks on a hot plate and insert the condenser.Begin recording the test duration when the solution beginsboiling. The boiling point during interlaboratory testing was106 to 1

    46、10C (223 to 230F).10.8 After one week remove the flask from the hot plate,determine the final pH of the solution at room temperature, anddiscard the remaining solution. A final pH over about 2.5suggests that general corrosion or pitting of the specimen orfastening device has occurred.ApH at this lev

    47、el is expected toreduce the test severity and may delay or preclude failures ofUNS S31600. More rapid cracking of UNS S31600 appearslikely with a final pH of about 2 or less.10.9 Rinse and dry the specimens. Examine the bend area,legs, and area adjacent to the crevice (at the fastener) at 203for cra

    48、cking. See Note 3. Record location of cracks.Additionalexposures or metallographic evaluation may be used to deter-mine if questionable indications are, in fact, stress-corrosioncracks.NOTE 3Any cracking at the fastener is very likely due to residual6The sole source of supply of amphoteric alundum g

    49、ranules known to thecommittee at this time is Hengar Co., Philadelphia, PA. If you are aware ofalternative suppliers, please provide this information to ASTM InternationalHeadquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee,1which you may attend.G 123 00 (2005)3stresses and more aggressive solution which may be formed in crevices. Ifcrevices are expected in service (due to design of service equipment ordeposits), a U-bend specimen employing a crevice on the bend may beevaluated.10.10 Periodic removal of the


    注意事项

    本文(ASTM G123-2000(2005) Standard Test Method for Evaluating Stress-Corrosion Cracking of Stainless Alloys with Different Nickel Content in Boiling Acidified Sodium Chloride Solution《沸.pdf)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开