欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM F2922-2013e1 Standard Specification for Polyethylene (PE) Corrugated Wall Stormwater Collection Chambers《聚乙烯 (PE) 波纹壁雨水收集室的标准规范》.pdf

    • 资源ID:539740       资源大小:228.44KB        全文页数:7页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM F2922-2013e1 Standard Specification for Polyethylene (PE) Corrugated Wall Stormwater Collection Chambers《聚乙烯 (PE) 波纹壁雨水收集室的标准规范》.pdf

    1、Designation: F2922 131An American National StandardStandard Specification forPolyethylene (PE) Corrugated Wall Stormwater CollectionChambers1This standard is issued under the fixed designation F2922; the number immediately following the designation indicates the year oforiginal adoption or, in the c

    2、ase of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTE5.3.8 and 5.3.9 were editorially corrected in December 2013.1. Scope*1.1 This specification cove

    3、rs requirements, test methods,materials, and marking for polyethylene (PE), open bottom,buried arch-shaped chambers of corrugated wall constructionused for collection, detention, and retention of stormwaterrunoff. Applications include commercial, residential,agricultural, and highway drainage, inclu

    4、ding installation un-der parking lots and roadways.1.2 Chambers are produced in arch shapes with dimensionsbased on chamber rise, chamber span, and wall stiffness.Chambers are manufactured with integral feet that provide basesupport. Chambers may include perforations to enhance waterflow. Chambers m

    5、ust meet test requirements for arch stiffness,flattening, and accelerated weathering.1.3 Analysis and experience have shown that the successfulperformance of this product depends upon the type and depthof bedding and backfill, and care in installation. This specifi-cation includes requirements for t

    6、he manufacturer to providechamber installation instructions to the purchaser.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.5 The

    7、following safety hazards caveat pertains only to thetest method portion, Section 6, of this specification:Thisstandard does not purport to address all of the safety concerns,if any, associated with its use. It is the responsibility of the userof this standard to establish appropriate safety and heal

    8、thpractices and determine the applicability of regulatory limita-tions prior to use.2. Referenced Documents2.1 ASTM Standards:2D618 Practice for Conditioning Plastics for TestingD1600 Terminology forAbbreviated Terms Relating to Plas-ticsD2122 Test Method for Determining Dimensions of Ther-moplastic

    9、 Pipe and FittingsD2412 Test Method for Determination of External LoadingCharacteristics of Plastic Pipe by Parallel-Plate LoadingD2990 Test Methods for Tensile, Compressive, and FlexuralCreep and Creep-Rupture of PlasticsD3350 Specification for Polyethylene Plastics Pipe and Fit-tings MaterialsD432

    10、9 Practice for Fluorescent Ultraviolet (UV) Lamp Ap-paratus Exposure of PlasticsD4703 Practice for Compression Molding ThermoplasticMaterials into Test Specimens, Plaques, or SheetsD6992 Test Method for Accelerated Tensile Creep andCreep-Rupture of Geosynthetic Materials Based on Time-Temperature Su

    11、perposition Using the Stepped IsothermalMethodF412 Terminology Relating to Plastic Piping SystemsF2136 Test Method for Notched, Constant Ligament-Stress(NCLS) Test to Determine Slow-Crack-Growth Resis-tance of HDPE Resins or HDPE Corrugated PipeF2787 Practice for Structural Design of Thermoplastic C

    12、or-rugated Wall Stormwater Collection Chambers3. Terminology3.1 DefinitionsDefinitions used in this specification are inaccordance with the definitions in Terminology F412, andabbreviations are in accordance with Terminology D1600,unless otherwise indicated.3.2 Definitions of Terms Specific to This

    13、Standard:3.2.1 chamberan arch-shaped structure manufactured ofthermoplastic with an open-bottom that is supported on feet1This specification is under the jurisdiction of ASTM Committee F17 on PlasticPiping Systems and is the direct responsibility of Subcommittee F17.65 on LandDrainage.Current editio

    14、n approved Nov. 1, 2013. Published December 2013. Originallyapproved in 2012. Last previous edition approved in 2012 as F2922-121. DOI:10.1520/F292213E01.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMS

    15、tandards volume information, refer to the standards Document Summary page onthe ASTM website.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1and may be joined into rows

    16、that begin with, and are termi-nated by, end caps (see Fig. 1).3.2.2 chamber storage capacitythe bare chamber storagecapacity excluding storage in end caps, stone porosity, distri-bution piping or other distribution components.3.2.3 corrugated walla wall profile consisting of a regularpattern of alt

    17、ernating crests and valleys (see Fig. 2).3.2.4 crestthe element of a corrugation located at theexterior surface of the chamber wall, spanning between twoweb elements (see Fig. 2).3.2.5 crownthe center section of a chamber typicallylocated at the highest point as the chamber is traversedcircumferenti

    18、ally.3.2.6 end capa bulkhead provided to begin and terminatea chamber, or row of chambers, and prevent intrusion ofsurrounding embedment materials.3.2.7 foota flat, turned out section that is manufacturedwith the chamber to provide a bearing surface for transfer ofvertical loads to the bedding (see

    19、Fig. 1).3.2.8 inspection portan opening in the chamber wall thatallows access to the chamber interior.3.2.9 nominal heighta designation describing the approxi-mate vertical dimension of the chamber at its crown (see Fig.1).3.2.10 nominal widtha designation describing the ap-proximate outside horizon

    20、tal dimension of the chamber at itsfeet (see Fig. 1).3.2.11 periodthe length of a single repetition of therepeated corrugation, defined as the distance from the center-line of a valley element to the centerline of the next valleyelement (see Fig. 2).3.2.12 risethe vertical distance from the chamber

    21、base(bottom of the chamber foot) to the inside of a chamber wallvalley element at the crown as depicted in Fig. 1.3.2.13 spanthe horizontal distance from the interior ofone sidewall valley element to the interior of the other sidewallvalley element as depicted in Fig. 1.3.2.14 valleythe element of a

    22、 corrugated wall located atthe interior surface of the chamber wall, spanning between twowebs (see Fig. 2).3.2.15 webthe element of a corrugated wall that connectsa crest element to a valley element (see Fig. 2).4. Materials and Manufacture4.1 The chamber and end caps shall be made of virgin PEplast

    23、ic compound meeting the requirements of SpecificationD3350 cell classification 516500C or 516500E, except that thecarbon black content shall not exceed 3%. Compounds thathave a higher cell classification in one or more properties shallbe permitted provided all other product requirements are met.For

    24、slow crack growth resistance, acceptance of resins shall bedetermined by using the notched constant ligament-stress(NCLS) test on a finished compounded resin according to theprocedure described in 6.2.11. The chamber sample shall beground and a test plaque made in accordance with PracticeD4703 Proce

    25、dure C at a cooling rate of 27F/min (15C/min)and tested per 6.2.11. The average failure time of test speci-mens from plaques shall not be less than 100 h.4.2 Rework MaterialIn lieu of virgin PE, clean reworkmaterial generated from the manufacturers own chambers maybe used, provided the material meet

    26、s the cell class require-ments of 4.1.5. Requirements5.1 Chamber Description:5.1.1 Chambers shall be produced in arch shapes symmetricabout the crown with corrugated wall and integral or attachedfeet for base support (see Fig. 1). Any arch shape is acceptableprovided all the requirements of this spe

    27、cification are met.The model chamber shown in this standard is intended only as a general illustration. Any arch-shape chamber configuration is permitted, as long as it meets all thespecified requirements of this standard.FIG. 1 Model ChamberF2922 1312NOTE 1For purposes of structural optimization, t

    28、he wall geometry(for example, corrugation height, crest width, valley width, and web pitch)may vary around the chamber circumference.5.1.2 Chambers shall be produced with maximum span atthe base of the chamber (bottom of the chamber foot).5.1.3 Chambers may include access ports for inspection orclea

    29、nout. Chambers with access ports shall meet the require-ments of this standard with access ports open and closed.5.1.4 Chambers may include provisions for hydraulic con-nections at various locations around the chamber. Chamberswith hydraulic connections through the chamber shall meet therequirements

    30、 of this standard with hydraulic connections (1)closed and (2) with the hydraulic connection fitting installed.5.1.5 Chambers may include perforations. Perforations shallbe cleanly fabricated in a size, shape, and pattern determinedby the manufacturer. Chambers with perforations shall meetthe requir

    31、ements of this standard.5.1.6 Chambers may include integral, repeating end walls.Chambers with integral repeating end walls shall meet therequirements of this standard at all locations along the chamberlength. The chamber shall be capable of carrying the full loadfor which it was designed at all loc

    32、ations along the chamberlength.5.1.7 Chamber sections shall be manufactured to connect atthe ends to provide rows of various lengths. Joints shall beconfigured to prevent intrusion of the surrounding embedmentmaterial and shall be capable of carrying the full load for whichthe chamber is designed.5.

    33、1.8 Each row of chambers shall begin and terminate withan end cap. End caps may be an integral part of the chamber ora separate component. End caps that are injection molded shallmeet the requirements of this standard.5.1.9 Chamber classifications, dimensions, and tolerancesare provided in Table 1.

    34、Chamber classifications are based onthe nominal height and nominal width of the chambers, asillustrated in Fig. 1. Classifications shall be manufactured withthe specified rise and span with tolerances, minimum footwidth, and wall thickness requirements.NOTE 2The values for arch stiffness in Table 1

    35、should not beconsidered comparable to values of pipe stiffness.5.2 WorkmanshipThe chambers shall be homogeneousthroughout and essentially uniform in color, opacity, density,and other properties. The interior and exterior surfaces shall befree of chalking, sticky, or tacky material. The chamber walls

    36、shall be free of cracks, blisters, voids, foreign inclusions, orother defects that are visible to the naked eye and may affectthe wall integrity.5.3 Physical and Mechanical Properties of Finished Cham-ber:5.3.1 Wall ThicknessChambers shall have minimum andaverage wall thicknesses not less than the w

    37、all thicknessesshown in Table 1 when measured in accordance with 6.2.1.5.3.2 Minimum Foot WidthChambers shall have a footwidth not less than the minimum foot width as shown in Table1 when measured in accordance with 6.2.2 (see also Fig. 1).The corrugation profile shown in this standard is intended o

    38、nly as a general illustration. Any corrugation pattern is permitted, as long as it meets all the specified testrequirements of this standard.FIG. 2 Model Corrugated WallTABLE 1 Chamber Classifications, Dimensions, and TolerancesChamberClassificationNominalHeightNominalWidthRise SpanMinimumFootWidthW

    39、allThicknessMinimumArchStiffnessConstantAverage ToleranceAverage ToleranceAverage Minimumin.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)in.(mm)lb/ft/%1633 16(406)33(838)13.5(343)1.0(25)25.0(635)1.0(25)4.0(100)0.130(3.3)0.120(3.0)3003051 30(762)51(1295)27.0(686)1.0(25)44.0(1118)1.1(28)4.0(10

    40、0)0.180(4.6)0.165(4.2)300F2922 13135.3.3 Rise and Span DimensionsChambers shall meetthe rise and span dimension requirements shown in Table 1when measured in accordance with Sections 6.2.3 and 6.2.4(see also Fig. 1).5.3.4 Deviation From StraightnessThe chamber and itssupport feet shall not have a de

    41、viation from straightness greaterthan L/100, where L is the length of an individual chamber,when measured in accordance with 6.2.5.NOTE 3This check is to be made at the time of manufacture and isincluded to prevent pre-installation deformations in a chamber that meetsall other requirements of this s

    42、tandard.5.3.5 Storage CapacityManufacturers shall provide thestorage capacity of the bare chamber and end cap and a stagestorage table for the chamber and end cap. Reported valuesshall be based on components “as-assembled” to eliminatedouble counting storage at joints and end caps. Volumedeterminati

    43、on shall be in accordance with 6.2.6.5.3.6 Creep Rupture StrengthSpecimens fabricated in thesame manner and composed of the same materials including alladditives, as the finished chambers shall have a 50 year creeprupture tensile strength at 73 F (23C) not less than 700 psi(4.8 MPa) when determined

    44、in accordance with 6.2.7.5.3.7 Creep ModulusSpecimens fabricated in the samemanner and composed of the same materials including alladditives, as the finished chambers shall have a 50 year tensilecreep modulus at 73 F (23C) of not less than 20,000 psi (138MPa) when tested at a stress level of 500 psi

    45、 (3.5 MPa) or thedesign service stress, whichever is greater. The creep modulusshall be determined in accordance with 6.2.8. The actual testderived creep modulus shall be used in the design of thechamber.NOTE 4The specified minimum modulus provides assurance oflong-term stiffness for a chamber resin

    46、. It does not provide assurance thatall chambers manufactured with a resin of this stiffness will be adequatefor all long-term load conditions. Structural calculations to demonstrateadequacy are still required in accordance with 5.5 and 5.6.2.NOTE 5The 50 year creep rupture strength and 50 year cree

    47、p modulusvalues, determined by the test methods in 6.2.7 and 6.2.8, are used todefine the slope of the logarithmic regression curves to describe therequired material properties sampled from the product. They are not to beinterpreted as service life limits.5.3.8 Arch Stiffness ConstantChambers shall

    48、have an archstiffness constant (ASC) not less than the minimum archstiffness constant shown in Table 1 when determined inaccordance with 6.2.9.5.3.9 FlatteningChambers shall show neither splitting,cracking, or breaking under normal light and the unaided eyenor loss of load carrying capacity when tes

    49、ted in accordancewith 6.2.10.5.3.10 Slow Crack Growth Resistancecompressionmolded samples from the finished chamber shall exhibit anaverage failure time of not less than 100 hrs when tested forslow crack growth resistance in accordance with 6.2.11.5.4 Accelerated WeatheringSpecimens fabricated in thesame manner and composed of the same materials as thefinished chambers shall meet all material requirements in 4.2after accelerated weathering described in 4.1.5.5 Design and Installation RequirementsChambers shallbe structurally desi


    注意事项

    本文(ASTM F2922-2013e1 Standard Specification for Polyethylene (PE) Corrugated Wall Stormwater Collection Chambers《聚乙烯 (PE) 波纹壁雨水收集室的标准规范》.pdf)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开