欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM F1502-2005(2010) Standard Test Method for Static Measurements on Tires for Passenger Cars Light Trucks and Medium Duty Vehicles《轿车 轻型载重车和中型车辆轮胎静态测量的标准试验方法》.pdf

    • 资源ID:535016       资源大小:227.52KB        全文页数:5页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM F1502-2005(2010) Standard Test Method for Static Measurements on Tires for Passenger Cars Light Trucks and Medium Duty Vehicles《轿车 轻型载重车和中型车辆轮胎静态测量的标准试验方法》.pdf

    1、Designation: F1502 05 (Reapproved 2010)Standard Test Method forStatic Measurements on Tires for Passenger Cars, LightTrucks, and Medium Duty Vehicles1This standard is issued under the fixed designation F1502; the number immediately following the designation indicates the year oforiginal adoption or,

    2、 in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers methods for performing certainmechanical static measurem

    3、ents on tires. The term “static”implies that the tire is not rotating while measurements arebeing made.1.2 The values stated in SI units are to be regarded asstandard. The values given in parentheses are for informationonly.1.3 This standard does not purport to address all of thesafety concerns, if

    4、any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D2240 Test Method for Rubber PropertyDurometerHa

    5、rdnessF421 Test Method for Measuring Groove and Void Depth inPassenger Car TiresF538 Terminology Relating to the Characteristics and Per-formance of TiresF870 Practice for Tread Footprints of Passenger Car TiresGroove Area Fraction and Dimensional MeasurementsF1082 Practice for TiresDetermining Prec

    6、ision for TestMethod Standards33. Terminology3.1 Definitions:3.1.1 outside diameter, nthe maximum diameter of a tirewhen it is mounted and inflated.3.1.2 overall width, nthe maximum cross-sectional widthof a tire, including protective or decorative ribs.3.1.3 tire weight, nthe weight of an unmounted

    7、 tirewithout tube or flap.3.1.4 tread arc width, nthe length of the arc measuredfrom one extreme of the tread design proper to the oppositeextreme; that is, from shoulder to shoulder perpendicular to thecircumferential center line.3.1.5 tread hardness, nthe hardness of an element in thetread design

    8、as measured by a designated standard gage.3.1.6 tread radius, nthe radius of a circle whose arc bestfits the tread surface when the radius template used is heldperpendicular to the circumferential center line of an inflatedtire.3.2 For additional definitions of terms used in this testmethod, refer t

    9、o Terminology F538.4. Significance and Use4.1 Static measurements of tires are important to tire manu-facturers, processing engineers, and vehicle design engineersfor purposes of commerce (in consumer/vendor agreements)and in tire research and development.4.2 The procedures are sufficiently detailed

    10、 to achievecommercially acceptable reproducibility among laboratoriesand may therefore be used for specification, compliance, orreference purposes.4.3 Changes attributable to growth after inflation may beobtained by comparing measurements made immediately afterinflation with those made 18 to 24 h la

    11、ter.5. Tire Marking5.1 For measurements other than weight, the tire shall bemarked at six equally spaced locations around the circumfer-ence. Starting at the DOT serial, make radial lines from bead tobead, perpendicular to the tread center line, at 60-degreeintervals. Number the resulting sections “

    12、1” through “6” in aclockwise sequence as viewed from the side containing theserial number.1This test method is under the jurisdiction of ASTM Committee F09 on Tiresand is the direct responsibility of Subcommittee F09.30 on Laboratory (Non-Vehicular) Testing.Current edition approved Dec. 1, 2010. Pub

    13、lished March 2011. Originallyapproved in 1994. Last previous edition approved in 2005 as F1502 051. DOI:10.1520/F1502-05R10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, r

    14、efer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.6. Procedures6.1 Tire Weigh

    15、t:6.1.1 Weigh the test tire on a scale with accuracy to 0.045 kg(0.1 lb) in the required range. A scale of 0-90 kg (0-200 lb) hasbeen found to be satisfactory for tires within the scope of thistest method.6.1.2 The scale used should be calibrated with weightstraceable to the National Institute of St

    16、andards Technology(NIST).6.2 Outside Diameter:6.2.1 Mount the test tire on a rim of the correct diameter forthe tire size and the measuring rim width listed for that tire inthe current yearbook of the Tire and Rim Association4(orapplicable document5,6), unless another width is chosen.6.2.2 Inflate t

    17、he tire to the maximum pressure given on thesidewall unless another pressure has been chosen. Do notexceed the maximum pressure given on the sidewall. Recordthe value used. Allow 24 h for inflation growth and adjustpressure if necessary.6.2.3 The assembly of wheel and inflated tire shall be intemper

    18、ature equilibrium with the environment in which themeasurements are to be made. This can usually be achieved in3 h at room temperature, 24 6 8C (75 6 15F). Recordambient temperature at the time of measurements.6.2.4 Anchor the end of a “diameter” (pi) tape in the treadcenter (or other maximum diamet

    19、er location, that is, center lowoxbow (Fig. 1), at any circumferential location. Use a thumb-tack if necessary. See Fig. 2.6.2.5 Carefully align the tape around the tire circumferenceso that it is parallel to the plane of the tread center line. Readand record the indicated diameter.6.3 Overall Width

    20、:6.3.1 Mount and condition the test tire as in 6.2.1-6.2.3.6.3.2 Use an outside caliper or other direct-reading devicethat is graduated in 0.25 mm (0.01 in.). See Figs. 3 and 4.6.3.3 The measured overall width shall include protectiveside ribs, bars, and decorations.6.3.4 Section width can be obtain

    21、ed by subtracting heightsof sidewall protuberances from the overall width obtained in6.3.3.6.3.5 Record individual and average overall width measure-ments from 6.3.3 to the nearest 0.25 mm (0.01 in.) from at leastthree equally spaced circumferential locations as marked in5.1.6.4 Tread Radius:6.4.1 P

    22、repare the tire as in 6.2.1-6.2.3.6.4.2 Tread radius templates commonly have radii rangingfrom 120 mm (4.75 in.) to 300 mm (12.0 in.) in 12.8-mm(0.50-in.) increments and from 300 mm (12.0 in.) to 900 mm(35.5 in.) in 12.8-mm (0.50-in.) increments. Choose the onethat most closely fits the tread arc de

    23、fined by one of thefollowing types of contour. See Fig. 5.NOTE 1For tires outside or different from these most popular treadradius contours, that is, extreme low profile types, identify those radii thatmost closely define the tread contour.6.4.2.1 Type A Single (Primary) (see Fig. 6)This type ischar

    24、acterized by a tread arc that can be uniformly contacted byone of the templates. Choose the one that most closely fits thearc defined by three points, the tread center, and two shoulders.Since a perfectly uniform radius is not always attainable, othertypical variations are discussed as means for arr

    25、iving at a bestdescriptive fit.6.4.2.2 Type B Dual, Drop Shoulder (see Fig. 7)This typeis characterized by the inability to fit a single-radius templateacross the entire tread because of drops at the shoulders.Choose the one that most closely fits the center portion of thetread, ignoring the shoulde

    26、r drop. A secondary radius of the4Current yearbook of the Tire and Rim Association available from the Tire andRim Association, Inc., 175 Montrose Avenue, West, Suite 150, Copley, OH 44321.5Current yearbook of the European Tyre and Rim Technical Organizationavailable from the ETRTO, 32 Avenue Brugman

    27、n, 1060 Brussels, Belgium.6Current yearbook of the Japan Automotive Tire Manufacturers AssociationInc. available from JATMA, 8thfloor, No. 33 Mori Bldg., 3-8-21 ToranomonMinato-ku, Tokyo, Japan 105-0001.FIG. 1 Type C: Tread Contour with a Center-Low OxbowFIG. 2 Outside Diameter MeasurementFIG. 3 Ove

    28、rall Width MeasurementF1502 05 (2010)2shoulders can then be determined to obtain a more completedescription of the tread contour.6.4.2.3 Type C, Center-Low Oxbow (see Fig. 1)This typeis characterized by a center contour that drops too low to befitted by any of the standard templates. This is the onl

    29、y contourtype for which the central area is not of prime importance.Choose the template that best fits the intermediate and shoulderareas. Do not confuse Type C with Type B secondary contouras shown in Fig. 7.6.4.2.4 Type D, Center-High Oxbow (see Fig. 8)This typeis characterized by raised center ri

    30、bs accompanied by adepressed intermediate area and another raised area at theshoulders, so that a gap exists in the mid-point areas. Choosethe template that most closely fits the tread center and bothshoulders.6.5 Tread Hardness:6.5.1 Prepare the test tire as in 6.2.1-6.2.3.6.5.2 Mount the tire/whee

    31、l unit in a test fixture or stand it ona smooth surface so that its wheel axis is parallel to thatsurface.6.5.3 An A-scale durometer hardness gage7may be used.Report the brand name of the one chosen.6.5.4 Make measurements in smooth and flat areas of the sixtread sections marked off in 5.1 (see Fig.

    32、 9). Avoid placing theprobe near sipes, mold vents, or edges of tread elements.6.5.5 Results on crown and shoulder elements should berecorded separately since they may differ from each other.6.5.6 Apply the gage rapidly, in a manner prescribed in TestMethod D2240, in a direction perpendicular to the

    33、 treadsurface, using enough force to ensure that the gate plate lies flatagainst the surface.7Shore and Rex typesA-scale durometer hardness gage have been found suitablefor this purpose.FIG. 4 Overall Width MeasurementFIG. 5 Tread Radius MeasurementFIG. 6 Type A: Tread Contour with a Single RadiusFI

    34、G. 7 Type B: Tread Contour with a Dual RadiusFIG. 8 Type D: Tread Contour with a Center-High Oxbow StyleFIG. 9 Tread Hardness MeasurementF1502 05 (2010)36.5.7 Hardness readings should be taken quickly, within 1 safter the application of force. Report the average hardnessreading, the nearest scale di

    35、vision, for the area measured, thatis, crown or shoulder.6.6 Tread Arc Width:6.6.1 Use a flexible steel scale, such as that shown in Fig.10, having scale divisions of 2.50 mm (0.10 in.).6.6.2 Press scale onto the tire tread so that it is perpendicularto the circumferential center line and conforms t

    36、o the tread arc.6.6.3 Record, to the nearest scale division, at least onemeasurement in each of the three chosen sections.7. Groove (Void) Depths7.1 Static measurements for groove (void) depths are de-scribed in Test Method F421.8. Gross Footprint Area8.1 Gross footprint area measurements are descri

    37、bed in TestMethod F870.9. Report9.1 Each examiner taking measurements will need to reportthe data in a logical format and form. Frequent tire measure-ments will necessitate that a standard data reporting form beutilized within ones own company.10. Precision and Bias810.1 This precision and bias sect

    38、ion has been prepared inaccordance with Practice F1082. Please refer to this practicefor terminology and other statistical calculation details.10.2 To develop the data for this precision section a P195/75R14 steel belted radial tire with measurement markings wasmounted on a 6 3 14 rim and circulated

    39、 to three laboratories ortire testing company locations, for the various static tiremeasurements as called for in this test method. At eachlaboratory, two different technicians made independent statictire measurements on each of two different days spaced oneday apart. The word “independent” means th

    40、at the results ofother technicians and the results of the previous day (for thesame technician) were not known or available during themeasurement process.10.3 The P195/75R14 tire was not dismounted for weightmeasurements. An inflation pressure of 26 psi (179 kPa) wasused for all static measurements.

    41、 A test result is defined as asingle measurement of the particular static tire dimension orproperty.10.4 The results of the precision evaluation are given inTable 1 for the seven static measurements. The results of thistable were calculated by the standard procedures as set forth inPractice F1082. T

    42、he within-laboratory variation expressed bySr (and r, (r) as well), is a pooled (or root mean square average)value across both technicians in all three laboratories. Thebetween-laboratory variation expressed by SR (and R, (R) aswell) is a value that has both a laboratory-to-laboratorycomponent as we

    43、ll as a technician-to-technician component.10.5 Statements for precision may be made as follows forany static measurement.10.5.1 RepeatabilityThe repeatability, r, of this test mea-surement has been established as the appropriate value tabu-lated in Table 1. Two single test results, obtained under n

    44、ormaltest method procedures, that differ by more than this tabulatedr, must be considered as derived from different or non-identicalsample populations.10.5.2 ReproducibilityThe reproducibility, R, of this testmeasurement has been established as the appropriate valuetabulated in Table 1. Two single t

    45、est results obtained in twodifferent laboratories, under normal test measurement proce-dures, that differ by more than the tabulated R, must beconsidered to have come from different or non-identical samplepopulations.10.5.3 Repeatability and reproducibility expressed as apercentage of the mean level

    46、, (r) and (R), have equivalentapplication statements as above for r and R. For the (r) and (R)statements, the difference in the two single test results isexpressed as a percentage of the arithmetic mean of the two testresults (in absolute units).10.6 In addition to the standard precision calculation

    47、 proce-dure as described above, an analysis of variance was conducted(a three-factor ANOVA with laboratories, technicians, anddays) to give supplementary information as to the partition ofthe total variation among the three factors. Table 2 gives theresults of that analysis where the percent of the

    48、total variationfor the three factors is given to the nearest 0.1 %. For tireweight, diameter, and width, 100 % of the variation (to 0.1 %)is the laboratory-to-laboratory component. Tread radius isessentially in this category also. Section width and tread arcwidth have a substantial technician-to-tec

    49、hnician component.Durometer hardness (which is a visco-elastic or time dependentmeasurement of modulus) has all three components contribut-ing to the total variation.10.7 This precision evaluation program had an inadequatenumber of laboratories for an in-depth evaluation of the testing8Supporting data for the precision evaluation program of this method have beenfiled at ASTM International Headquarters and may be obtained by requestingResearch Report RR: F09 1001.FIG. 10 Tread Arc Width MeasurementF1502 05 (2010)4precision. The precision results are only a


    注意事项

    本文(ASTM F1502-2005(2010) Standard Test Method for Static Measurements on Tires for Passenger Cars Light Trucks and Medium Duty Vehicles《轿车 轻型载重车和中型车辆轮胎静态测量的标准试验方法》.pdf)为本站会员(bowdiet140)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开