欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E794-2006(2018) 2500 Standard Test Method for Melting And Crystallization Temperatures By Thermal Analysis《用热分析测定熔化和结晶温度的标准试验方法》.pdf

    • 资源ID:533538       资源大小:107.36KB        全文页数:4页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E794-2006(2018) 2500 Standard Test Method for Melting And Crystallization Temperatures By Thermal Analysis《用热分析测定熔化和结晶温度的标准试验方法》.pdf

    1、Designation: E794 06 (Reapproved 2018)Standard Test Method forMelting And Crystallization Temperatures By ThermalAnalysis1This standard is issued under the fixed designation E794; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the

    2、 year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method describes the determination of melting(and crystallization) temperatures of pure materials b

    3、y differ-ential scanning calorimetry (DSC) and differential thermalanalysis (DTA).1.2 This test method is generally applicable to thermallystable materials with well-defined melting temperatures.1.3 The normal operating range is from 120 to 600C forDSC and 25 to 1500C for DTA. The temperature range

    4、can beextended depending upon the instrumentation used.1.4 Computer or electronic based instruments, techniques,or data treatment equivalent to those in this test method may beused.1.5 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstan

    5、dard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior t

    6、o use.1.7 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarri

    7、ers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2E473 Terminology Relating to Thermal Analysis and Rhe-ologyE793 Test Method for Enthalpies of Fusion and Crystalliza-tion by Differential Scanning CalorimetryE967 Test Method for Temperature Calibration of Differen-tial Scanning

    8、 Calorimeters and Differential Thermal Ana-lyzersE1142 Terminology Relating to Thermophysical Properties3. Terminology3.1 DefinitionsSpecialized terms used in this test methodare defined in Terminologies E473 and E1142.4. Summary of Test Method4.1 The test method involves heating (or cooling) a test

    9、specimen at a controlled rate in a controlled environmentthrough the region of fusion (or crystallization). The differencein heat flow (for DSC) or temperature (for DTA) between thetest material and a reference material due to energy changes iscontinuously monitored and recorded. A transition is mar

    10、kedby absorption (or release) of energy by the specimen resultingin a corresponding endothermic (or exothermic) peak in theheating (or cooling) curve.NOTE 1Enthalpies of fusion and crystallization are sometimes deter-mined in conjunction with melting or crystallization temperature measure-ments. The

    11、se enthalpy values may be obtained by Test Method E793.5. Significance and Use5.1 Differential scanning calorimetry and differential ther-mal analysis provide a rapid method for determining the fusionand crystallization temperatures of crystalline materials.5.2 This test is useful for quality contro

    12、l, specificationacceptance, and research.6. Interferences6.1 Test specimens need to be homogeneous, since milli-gram quantities are used.6.2 Toxic or corrosive effluents, or both, may be releasedwhen heating the material and could be harmful to personneland to apparatus.7. Apparatus7.1 Apparatus sha

    13、ll be of either type listed below:1This test method is under the jurisdiction ofASTM Committee E37 on ThermalMeasurements and is the direct responsibility of Subcommittee E37.01 on Calo-rimetry and Mass Loss.Current edition approved April 1, 2018. Published May 2018. Originallyapproved in 1981. Last

    14、 previous edition approved in 2012 as E794 06 (2012).DOI: 10.1520/E0794-06R18.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page on

    15、the ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDev

    16、elopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.17.1.1 Differential Scanning Calorimeter (DSC) or Differen-tial Thermal Analyzer (DTA)The essential instrumentationrequired to provide the minimum differ

    17、ential scanning calori-metric or differential thermal analyzer capability for thismethod includes:7.1.1.1 Test Chamber composed of:(1) A furnace or furnaces to provide uniform controlledheating (cooling) of a specimen and reference to a constanttemperature or at a constant rate within the applicable

    18、 tempera-ture range of this method.(2) A temperature sensor to provide an indication of thespecimen or furnace temperature to within 60.01C.(3) Differential sensors to detect a heat flow difference(DSC) or temperature difference (DTA) between the specimenand reference with a range of at least 100 mW

    19、 and a sensitivityof 61 W (DSC) or 4C and a sensitivity of 40 C (DTA).(4) Ameans of sustaining a test chamber environment witha purge gas of 10 to 100 6 5 mL/min.NOTE 2Typically 99.9+ % pure nitrogen, argon or helium is employedwhen oxidation in air is a concern. Unless effects of moisture are to be

    20、studied, use of dry purge gas is recommended and is essential foroperation at subambient temperatures.7.1.1.2 A temperature controller, capable of executing aspecific temperature program by operating the furnace orfurnaces between selected temperature limits at a rate oftemperature change of 10C/min

    21、 constant to within 60.1C/min or at an isothermal temperature constant to 60.1C.7.1.2 A recording device, capable of recording and display-ing on the Y-axis any fraction of the heat flow signal (DSCcurve) or differential temperature Signal (DTA Curve) includ-ing the signal noise as a function of any

    22、 fraction of thetemperature (or time) signal on the X-axis including the signalnoise.7.2 Containers (pans, crucibles, vials, lids, closures, seals,etc.) that are inert to the specimen and reference materials andthat are of suitable structural shape and integrity to contain thespecimen and reference

    23、in accordance with the requirements ofthis test method.NOTE 3DSC containers are commonly composed of aluminum orother inert material of high thermal conductivity. DTA containers arecommonly composed of borosilicate glass (for use below 500C),alumina, or quartz (for use below 1200C).7.3 Nitrogen, or

    24、other inert purge gas supply.7.4 Auxiliary instrumentation and apparatus considerednecessary or useful for conducting this method includes:7.4.1 Analytical Balance, with a capacity greater than 100mg, capable of weighing to the nearest 0.01 mg.7.4.2 Cooling capacity to hasten cooling down from el-ev

    25、ated temperatures, to provide constant cooling rates or tosustain an isothermal subambient temperature.7.4.3 A means, tool or device, to close, encapsulate or sealthe container of choice.8. Sampling8.1 Powdered or granular materials should be mixed thor-oughly prior to sampling and should be sampled

    26、 by removingportions from various parts of the container. These portions, inturn, should be combined and mixed well to ensure a repre-sentative specimen for the determination. Liquid samples maybe sampled directly after mixing.8.2 In the absence of information, samples are assumed tobe analyzed as r

    27、eceived. If some heat or mechanical treatmentis applied to the sample prior to analysis, this treatment shouldbe noted in the report. If some heat treatment is applied, recordany mass loss as a result of this treatment.9. Calibration9.1 Using the same heating rate, purge gas, and flow rate asthat to

    28、 be used for analyzing the specimen, calibrate thetemperature axis of the instrument using the procedure in TestMethod E967.10. Procedure10.1 Weigh 1 to 15 mg of material to an accuracy of 0.01mg into a clean, dry specimen capsule. The specimen mass tobe used depends on the magnitude of the transiti

    29、on enthalpyand the volume of the capsule. For comparing multiple results,use similar mass (65 %) and encapsulation.10.2 Load the encapsulated specimen into the instrumentchamber, and purge the chamber with dry nitrogen (or otherinert gas) at a constant flow rate of 10 to 50 mL/min throughoutthe expe

    30、riment. The flow rate should be measured and heldconstant for all data to be compared. The use of 99.99 % puritypurge gas and a drier is recommended.10.3 When a DSC is used, heat the specimen rapidly to30C (60C in a DTA) below the melting temperature, andallow to equilibrate. For some materials, it

    31、may be necessary tostart the scan substantially lower in temperature, for example,below the glass transition in order to establish a baseline wherethere is no evidence of melting or crystallization.FIG. 1 Fusion and Crystallization Temperatures for Pure Crys-talline MaterialE794 06 (2018)210.4 Heat

    32、the specimen at 10C/min through the meltingrange until the baseline is reestablished above the meltingendotherm. Other heating rates may be used but shall be notedin the report. To allow the DSC system to achieve steady state,provide at least 3 min of scanning time both before and afterthe peak. For

    33、 DTA instrumentation, allow at least 6 min toensure reaching a steady state. Record the accompanyingthermal curve.10.5 Hold the specimen at this temperature for 2 min. Otherperiods may be used but shall be noted in the report.10.6 Cool the specimen at 10C/min through the exothermuntil the baseline i

    34、s reestablished below the crystallizationexotherm. Other cooling rates may be used but must beindicated in the report. To allow the system to achieve steadystate, provide at least 3 min of scanning time (six for DTA)both before and after the peak. For some materials, it may benecessary to scan sever

    35、al tens of degrees below the peakmaximum in order to attain a constant baseline. Record theaccompanying thermal curve.10.7 Reweigh the specimen after completion of the analysisand discard. Report any mass loss observed.NOTE 4Mass loss is only one indication of suspected sampledegradation or decompos

    36、ition. An accurate determination of mass lossmay not be easily accomplished for tests in which the measuringthermocouple is embedded in the specimen. For these cases, otherdecomposition indications, such as color change, will suffice and shouldbe reported.10.8 From the resultant curve, measure the t

    37、emperatures forthe desired points on the curve: Tp,Tm,Tf,Tn,Tc. Report Tm,andTn, (see Fig. 1) for a pure crystalline, low molecular weightcompound. For such a material Tmis the best determination ofthe discrete thermodynamic melting temperature, and Tnindi-cates the onset of crystallization. For pol

    38、ymers, alloys ormixtures of materials, report the relevant descriptive parameter(see Fig. 2). Report multiple Tps and Tcs, if observed.where:Tm= melting temperature,Tp= melting peak maximum,C,Tf= return to baseline,C,Tn= extrapolated crystallization onsetC, andTc= crystallization onset,C.NOTE 5For c

    39、ertain DTA instrumentation, the peak shape obtainedfrom melting a pure, low molecular weight crystalline material (such as amelting point standard) may look quite different from that shown in Fig.1. If this is the case, report all of the above parameters for any materialanalyzed. In this case the Tp

    40、and Tcvalues are often taken as the meltingand crystallization temperatures, respectively.NOTE 6Samples of high purity materials may crystallize with varyingamounts of supercooling; therefore, the use of crystallization temperaturesshould be established prior to use. In general, crystallization temp

    41、eraturesare useful for polymeric, alloy, and impure organic and inorganicchemicals having sufficient nucleation sites for repeatable determinationsof crystallization temperatures.11. Report11.1 Report the following information:11.1.1 Complete identification and description of the mate-rial tested in

    42、cluding source, manufacturers code, and anythermal or mechanical pretreatment.11.1.2 Description of instrument (such as manufacturer andmodel number) used for test.11.1.3 Statement of the mass, dimensions, geometry, andmaterial of specimen encapsulation, and temperature program.11.1.4 Description of

    43、 temperature calibration procedure.11.1.5 Identification of the specimen environment by gasflow rate, purity, and composition.11.1.6 Results of the transition measurements using thetemperature parameters (Tp, etc.) cited in Figs. 1 and 2.Ingeneral, temperature results should be reported to the neare

    44、st0.1C.11.1.7 Any side reaction (for example, thermal degradationand oxidation) shall also be reported and the reactionidentified, if possible.FIG. 2 Fusion and Crystallization Temperatures for Polymeric MaterialE794 06 (2018)311.1.8 The specific dated version of this standard used.12. Precision and

    45、 Bias312.1 The precision and bias were determined by an inter-laboratory study in which 17 laboratories participated usingfive instrument models. The testing was performed on polymer,pure organic, and inorganic materials.12.2 Based on the results of this study, the following criteriaare recommended

    46、for judging the acceptability of results:12.2.1 Repeatability (Single Analyst)The standard devia-tion of results, obtained by the same analyst on different days,is estimated for the:12.2.1.1 Melting Temperature (Me), Melting Peak Maximum(Tp), Extrapolated Crystallization onset (Tn), and Peak maxi-mu

    47、m (Tc) to be 1.1C at 400 degrees of freedom. Two suchresults should be considered suspect (95 % confidence level) ifthey differ by more than 3.1C.12.2.2 Reproducibility(Multilaboratory)The standard de-viation of results, obtained by analysts in different laboratories,has been estimated for the:12.2.

    48、2.1 Melting Temperature (Tm), Melting Peak maximum(Tp), Extrapolated Crystallization onset (Tn), and Crystalliza-tion Peak maximum (Tc) to be 2.1C at 168 degrees of freedom.Two such results should be considered suspect (95 % confi-dence level) if they differ by more than 5.9C.12.3 An estimation of t

    49、he accuracy of the melting tempera-ture measurement was obtained by comparing the overall meanvalue obtained during the interlaboratory testing with valuesreported in the literature.Melting Temperatures,CMaterial Interlaboratory Test LiteratureLeadA326.4 2.0 327.5 0.03Adipic acidB151.1 0.7 151.4 0.003ARossini, F.O., Pure and Applied Chemistry, Vol 22, 1972, p. 557.BColarusso, V.G., et al, Analytical Chemistry, Vol 40, 1968, p. 1521.12.4 A second interlaboratory test (ILT) was carried out in1997 to determine the extent to which more mod


    注意事项

    本文(ASTM E794-2006(2018) 2500 Standard Test Method for Melting And Crystallization Temperatures By Thermal Analysis《用热分析测定熔化和结晶温度的标准试验方法》.pdf)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开