欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E2781-2011 Standard Practice for Evaluation of Methods for Determination of Kinetic Parameters by Thermal Analysis《用热分析测定动力参数方法评估的标准操作规程》.pdf

    • 资源ID:531879       资源大小:91.50KB        全文页数:6页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E2781-2011 Standard Practice for Evaluation of Methods for Determination of Kinetic Parameters by Thermal Analysis《用热分析测定动力参数方法评估的标准操作规程》.pdf

    1、Designation: E2781 11Standard Practice forEvaluation of Methods for Determination of KineticParameters by Thermal Analysis1This standard is issued under the fixed designation E2781; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, t

    2、he year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 It is the purpose of this Practice to provide kineticparameters for reference materials used for evaluation

    3、 ofthermal analysis methods, apparatus and software where en-thalpy and temperature are measured. This Practice addressesboth exothermic and endothermic, nth order and autocatalyticreactions.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included i

    4、n thisstandard.1.3 There is no International Organization for Standardiza-tion (ISO) equivalent to this standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate sa

    5、fety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E473 Terminology Relating to Thermal Analysis and Rhe-ologyE698 Test Method for Arrhenius Kinetic Constants forThermally Unstable Materials Using Differential

    6、ScanningCalorimetry and the Flynn/Wall/Ozawa MethodE1142 Terminology Relating to Thermophysical PropertiesE1641 Test Method for Decomposition Kinetics by Ther-mogravimetryE1981 Guide for Assessing Thermal Stability of Materialsby Methods of Accelerating Rate CalorimetryE2041 Test Method for Estimati

    7、ng Kinetic Parameters byDifferential Scanning Calorimeter Using the Borchardt andDaniels MethodE2070 Test Method for Kinetic Parameters by DifferentialScanning Calorimetry Using Isothermal Methods3. Terminology3.1 DefinitionsSpecific technical terms used in this prac-tice are defined in Terminologie

    8、s E473 and E1142, includingdifferential scanning calorimetry.4. Summary of Practice4.1 Kinetics is the study of the relationship of the extent ofa chemical reaction to the independent parameters of time andtemperature. This relationship is often described using theArrhenius expression where:da/dt 5

    9、Zfa! exp E/RT! (1)where:a = fraction left to react,f(a) = some function of (a),E = activation energy (J/mol),R = gas constant (=8.314 J mol1K1),T = absolute temperature (K), andZ = pre-exponential factor (1/sec).4.2 For many reactions of interest the description of thefunction of amount left to reac

    10、t is of the form:fa! 5am1a!n(2)where m and n are the overall reaction orders. This form ofthe concentration dependence is known as the auto-catalyticform or the Sestak-Berggren reaction (1).3If the value of mequals 0, then f(a) reduces to the form of f(a) =(1a)ncommonly call nth order reaction.4.3 E

    11、q 1 may be evaluated in either its exponential orlogarithmic form:ln da/dt! 5 ln Z 1 ln fa! E/RT (3)4.4 The study of kinetics involves the determination ofvalues of E, Z, m, and n for a given reaction.NOTE 1Activation energy and pre-exponential factor are not indepen-dent parameters but are inter-re

    12、lated.NOTE 2The descriptions provided in Eq 1-3 are only mathematicalmodels. That is, they represent the fitting of mathematical equations tooften “noisy” experimental data. In practice no such model will faithfully1This practice is under the jurisdiction of ASTM Committee E27 on HazardPotential of

    13、Chemicals and is the direct responsibility of Subcommittee E27.02 onThermal Stability and Condensed Phases.Current edition approved March 1, 2011. Published April 2011. DOI: 10.1520/E2781-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serv

    14、iceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The boldface numbers in parentheses refer to a list of references at the end ofthis standard.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Cons

    15、hohocken, PA 19428-2959, United States.describe the complete reaction(s) under all conditions for the materialsdescribed in this practice.4.5 Values for the kinetic parameter are typically in theranges indicated below:log Z: 8 to 30 with Z in s1E: 50 to 250 kJ/moln: 0.0 to 2.0m: 0 to 2.04.6 By their

    16、 nature, thermally reactive materials maychange with time. For this reason, certified reference materialsare not available for use in the evaluation of kinetic parameters.The user of this standard may synthesize or purchase from acommercial laboratory supply house materials of suitablepurity for use

    17、 in this standard.NOTE 3Storage of reference materials in a refrigerator may prolongshelf life. Observe manufacturers recommendations.4.7 The recommended values for the thermal active mate-rials identified in this standard are taken from “best values”found in the open literature as described in the

    18、accompanyingtables.5. Significance and Use5.1 The kinetic parameters provided in this standard may beused to evaluate the performance of a standard, apparatus,techniques or software for the determination parameters (suchas Test Methods E698, E1641, E2041,orE2070) using thermalanalysis techniques suc

    19、h as differential scanning calorimetry,and accelerating rate calorimetry (Guide E1981). The resultsobtained by these approaches may be compared to the valuesprovided by this practice.NOTE 4Not all reference materials are suitable for each measurementtechnique.6. Hazards6.1 Thermally reactive materia

    20、ls evolve heat as part of theindicated reaction. Build up of this heat may lead to adangerous over-pressure condition or to a self acceleratingreaction. Operators shall use caution when working with suchmaterials. Operators shall use as small amount of material as ispractical for the measurement.6.2

    21、 The reference materials described in this standard andtheir decomposition products may be explosive, carcinogenic,hazardous, toxic, or corrosive. Handling of these materialsshould be performed by trained workers who are knowledge-able with the Material Safety Data Sheets (MSDS) for eachmaterial. Te

    22、tramethyl succinonitrile (TMSN), a decompositionproduct of azobisisobutyronitrile (AIBN), is considered a verytoxic (neurotoxic agent) and hazardous substance.7. Procedure7.1 Experimentally determined kinetic parameters are com-pared to the values described in this Practice as their quotient,express

    23、ed as percent. Thus values less than unity or 100 %indicate that the determined value is less than the referencevalue while those greater than unity or 100 % indicate that thedetermined value is greater than the reference value.8. Calculation8.1 Conformance =(Observed Value 3 100 %)(Referenced Value

    24、)NOTE 5Generally speaking, experimentally determined kinetic pa-rameters E and log Z are considered to be in agreement if they haveconformance between 80 and 120 % of the values described in Table 1.Experimentally determined values m and n are considered to be inagreement if they have conformance be

    25、tween 70 and 130 % of the valuesdescribed in Table 1.NOTE 6The value of log Z depends upon the concentration of thereactant.9. Report9.1 Identification of the kinetic method being examined.9.1.1 Identification of the reference material being used forthe comparison, its source and purity.9.1.2 The co

    26、mparison quotient (conformance) for each ki-netic parameter.10. Precision and Bias10.1 This practice is used to determine the bias of kineticvalues determined by other standards or candidate standards.TABLE 1 Kinetic Parameters for Kinetic Reference Materials (Derived from Tables 2-6)NOTE 1where:E =

    27、 activation energy,Z = pre-exponential factor,n = reaction order,m = reaction order,H = enthalpy of reaction of the pure material, andDSC = differential scanning calorimeters.Material E, kJ/mol log (Z,1/s) nmH, kJ/g DescriptionDi-t-butylperoxide158.1 15.80 1.0 0.0 1.34Generally tested in liquid form

    28、 as a 10 to 20 %solution in toluene. Kinetic parameters are solventsensitive. Suitable for calorimeters.Azidotriphenylmethane 165.1 19.00 1.0 0.0 Suitable for DSC.Azobenzene 102.5 11.98 1.0 0.0 0.254 Solid material, endothermic; Suitable for DSC.Azobisisobutyronitrile 128.5 15.12 1.0 0.0 Suitable fo

    29、r calorimeters and DSC.Phenyltetrazolthiol 143 20.4 1.7 1.3 Suitable for DSC.E2781 11210.2 This practice does not generate experimental data andhas no precision.11. Keywords11.1 activation energy; kinetics; pre-exponential factor; re-action order; thermal analysisTABLE 2 Literature Values for Di-t-b

    30、utylperoxide (DTBP) from which the Recommended Values for Table 1 are ObtainedNOTE 1where:E = activation energy,Z = pre-exponential factor,n = reaction order,H = enthalpy of reaction of the pure material,DSC = differential scanning calorimeters, andARC = accelerating rate calorimeter.E, kJ/mol log (

    31、Z,1/s) H, kJ/g nAConditions Reference148 16.15 (2)163 16.45 gas phase (3)154 15.11 DSC, mineral oil (4)158 16.36 ARC, mineral oil, or toluene (5)122.1 6 2.8 11.51 6 0.33 1.19 6 0.02 DSC, 725 psi (6)136 12.87 0.1 M in diesel fuel (7)148 14.87 Neat (8)140 13.74 Neat (9)159.2 6 9.9 16.3 6 1.2 30 to 60

    32、% in toluene (10)146.7 6 7.0 15.0 6 0.9 30 to 60 % in benzene (10)158.5 16.1 1.31 ARC (11)145.5 15.1 1.82 DSC (11)147.3 6 3.4 15.68 6 0.44 1.29 0.925 6 0.088 ARC (12)158.2 16.15 1.19 (13)1.335 (14)159 in t-butyl benzene (15)151 in toluene (16)142 in vapor phase (16)163 in vapor phase (17)157 in i-pr

    33、opylbenzene (17)159 in t-butylbenzene (17)155 in t-butylamine (17)159.7 6 0.58 15.94 6 0.07 in vapor phase (18)157.7 6 0.63 15.71 6 0.08 (19, 20)138.4 6 2.5 13.16 6 0.31 (16)146.7 6 6.7 14.04 6 0.83 (21)161.3 6 3.1 16.30 6 0.39 (22)164.5 6 1.0 16.63 6 0.24 in diethylketone (23)158.4 6 1.2 15.82 6 0.

    34、18 (24)152.6 6 1.5 15.33 6 0.13 in vapor phase (25)160.1 6 1.3 16.07 6 0.14 (26)158.1 6 0.25 15.80 6 0.03 (1.00) Gas phase “best” literature average (24)154.7 15.634 Solution (27)163.03 15.95- (28)157.3 6 2.1 15.94 6 0.34 (1.00) 15 % in toluene (29)1.25 6 0.04 (30)152.0 6 6.1 (1.00) 20 % in toluene

    35、(31)158.2 6 4.9 19.62 6 0.59 1.0 6 0.05 20 % in toluene and benzene (32)161 (33)AValues in parenthesis are assumed.E2781 113TABLE 3 Literature Values for Azobenzene from which the Recommended Values for Table 1 are ObtainedNOTE 1where:E = activation energy,Z = pre-exponential factor,n = reaction ord

    36、er, andH = enthalpy of reaction of the pure material.E, kJ/mol log (Z,1/s) H, kJ/g nAConditions Reference103.4 6 1.6 12.2 6 0.25 264.5 6 1.6 (1.00) (34)103.5 6 1 (1.00) (35)102.5 6 0.2 11.98 6 0.1 253.7 6 5.4 (1.00) Melt (36)AValues in parenthesis are assumed.TABLE 4 Literature Values for Azidotriph

    37、enylmethane (Trityl azide) from which the Recommended Values for Table 1 are ObtainedNOTE 1where:E = activation energy,Z = pre-exponential factor,n = reaction order, andH = enthalpy of reaction of the pure material.E, kJ/mol log (Z,1/s) H, kJ/g nAConditions Reference145 6 11 17.0 6 1.7 (1.00) Test M

    38、ethod E698 RR:E27-1002B165.1 6 17 19.0 6 2.0 1.32 6 0.30 Test Method E2041 RR:E37-1028CAValues in parenthesis are assumed.BSupporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:E27-1002.CSupporting data have been filed at ASTM Interna

    39、tional Headquarters and may be obtained by requesting Research Report RR:E37-1028.TABLE 5 Literature Values for Azobisisobutyronitrile (AIBN) from which the Recommended Values for Table 1 are ObtainedNOTE 1where:E = activation energy,Z = pre-exponential factor,n = reaction order, andH = enthalpy of

    40、reaction of the pure material.E, kJ/mol log (Z,1/s) H, kJ/g nAConditions Reference182 (37)129 15.20 (1.00) (38)121.3 6 9.2 14.42 6 1.3 1.02 (39)117.9 6 2.7 14.11 6 1.0 1.03 (39)99.7 13.24 (1.00) Test Method E698 (39)128.5 6 8.4 15.12 6 1.1 1238 6 78 (1.00) (40)AValues in parenthesis are assumed.TABL

    41、E 6 Literature Values for Phenyltetrazolthiol from which the Recommended Values for Table 1 are ObtainedNOTE 1where:E = activation energy,Z = pre-exponential factor,n = reaction order,m = reaction order, andH = enthalpy of reaction of the pure material.E, kJ/mol log (Z,1/s) H, kJ/g nmConditions Refe

    42、rence143 6 17 20.4 6 2.4 1.68 6 0.49 1.32 6 0.14 Test Method E2070 RR:E37-1029AASupporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:E37-1029.E2781 114REFERENCES(1) Sestak, and J., Berggren, G., “Study of the Kinetics of the Mechanis

    43、mof Solid-Solid Reactions at Increasing Temperature,” ThermochimicaActa, Vol 3, 1971, pp. 112.(2) Yasutake, H., Kogyo Kayku (Journal of the Industrial ExplosivesSociety (Japan), Vol 52, 1991, p. 350.(3) Wrabetz, K., and Wong, J., Fresenius Zeitschrift fur AnalytischeChemie, Vol 329, 1987, p. 487.(4)

    44、 Torfs, J.C.M., Leen, D., Dorrepaal, A.J., and Heijens, J.C., AnalyticalChemistry, Vol 56, 1984, p. 2863.(5) Gimzewski, E., and Audley, G., “Thermal Hazards: CalculatingAdiabatic Behavior from DSC Data,” Thermochimica Acta, Vol 214,1993, pp. 129140.(6) Griffiths, J.F., Gilligan, M.F., and Gray, P.,

    45、Combustion and Flame,Vol 24, 1975, p. 11.(7) MacNeil, D.D., Christensen, L., Landucci, J., Paulsen, J.M., and Dahn,J.R., Journal of the Electrochemical Society, Vol 147, 2000, p. 970.(8) Oxley, J.C., Smith, J.L., Rogers, E., Ye, W., Ardai, A.A., and Henly,T.J., Energy Fuels,Vol 14, 2000, p. 1252.(9)

    46、 MacNeil, D.D., Trussler, S., Fortier, H., and Dahn, J.R., “A NovelHertic Differential Scanning Calorimeter Sample Crucible,” Ther-mochimica Acta, Vol 386, 2002, pp. 153160.(10) Aldeeb, A.A., Rogers, W.J., and Mannan, M.S., “Theoretical andExperimental Methods for the Evaluation of Reactive Chemical

    47、Hazards,” Transactions of the Institution of Chemical Engineers,Vol 80, 2002, pp. 141149.(11) Hofelich, T.C., Frurip, D.J., and Powers, J.B., “The Determination ofCompatibility via Thermal Analysis and Mathematical Modeling,”Process Safety Progress, Vol 13, 1994, pp. 227233.(12) Towsend, D.I., and T

    48、ou, J.C., Thermochimica Acta, Vol 37, 1980,pp. 130.(13) Whiting, L.F., LaBean, M.S., and Eadie, S.S., Thermochimica Acta,Vol 136, 1988, pp. 231245.(14) Grewer, T., Thermal Hazards of Chemical Reactions, Elsevier, NewYork, 1994, p. 394.(15) Ball, E., Rust, F., and Vaughn, W., Journal of the AmericanC

    49、hemical Society, Vol 72, 1950, p. 337.(16) Murawaski, J., Roberts, J.S., and Szwarc, M., Journal of ChemicalPhysics, Vol 19, 1951, p. 698.(17) Raley, J., Rust, F., and Vaughan, W., Journal of the AmericanChemical Society, Vol 70, 1948, pp. 1136, 2767.(18) Birss, F.W., Danby, C.J., and Hinshelwood, C.N., Proceedings of theRoyal Society A, Vol 239, 1957, p. 154.(19) Blatt, L., and Benson, S.W., Journal of Chemical Physics, Vol 36,1962, p. 895.(20) Blatt, L., and Benson, S.W., Journal of Chemical Physics, Vol 38,1963, p. 3031.(21) Jauiss, M.T., R


    注意事项

    本文(ASTM E2781-2011 Standard Practice for Evaluation of Methods for Determination of Kinetic Parameters by Thermal Analysis《用热分析测定动力参数方法评估的标准操作规程》.pdf)为本站会员(terrorscript155)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开