欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E2536-2006 Standard Guide for Assessment of Measurement Uncertainty in Fire Tests《评估防火试验中不确定度测量用标准指南》.pdf

    • 资源ID:531339       资源大小:292.48KB        全文页数:11页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E2536-2006 Standard Guide for Assessment of Measurement Uncertainty in Fire Tests《评估防火试验中不确定度测量用标准指南》.pdf

    1、Designation: E 2536 06Standard Guide forAssessment of Measurement Uncertainty in Fire Tests1This standard is issued under the fixed designation E 2536; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A nu

    2、mber in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.INTRODUCTIONThe objective of a measurement is to determine the value of the measurand, that is, the physicalquantity that needs to be measured. Ever

    3、y measurement is subject to error, no matter how carefullyit is conducted. The (absolute) error of a measurement is defined in Eq 1.All terms in Eq 1 have the units of the physical quantity that is measured. This equation cannot beused to determine the error of a measurement because the true value i

    4、s unknown, otherwise ameasurement would not be needed. In fact, the true value of a measurand is unknowable because itcannot be measured without error. However, it is possible to estimate, with some confidence, theexpected limits of error. This estimate is referred to as the uncertainty of the measu

    5、rement andprovides a quantitative indication of its quality.Errors of measurement have two components, a random component and a systematic component.The former is due to a number of sources that affect a measurement in a random and uncontrolledmanner. Random errors cannot be eliminated, but their ef

    6、fect on uncertainty is reduced by increasingthe number of repeat measurements and by applying a statistical analysis to the results. Systematicerrors remain unchanged when a measurement is repeated under the same conditions. Their effect onuncertainty cannot be completely eliminated either, but is r

    7、educed by applying corrections to accountfor the error contribution due to recognized systematic effects. The residual systematic error isunknown and shall be treated as a random error for the purpose of this standard.General principles for evaluating and reporting measurement uncertainties are desc

    8、ribed in theGuide on Uncertainty of Measurements (GUM). Application of the GUM to fire test data presentssome unique challenges. This standard shows how these challenges can be overcome.ey 2 Y (1)where:e = measurement error;y = measured value of the measurand; andY = true value of the measurand.1. S

    9、cope1.1 This guide covers the evaluation and expression ofuncertainty of measurements of fire test methods developedand maintained byASTM International, based on the approachpresented in the GUM. The use in this process of precision dataobtained from a round robin is also discussed.1.2 Application o

    10、f this guide is limited to tests that providequantitative results in engineering units. This includes, forexample, methods for measuring the heat release rate ofburning specimens based on oxygen consumption calorimetry,such as Test Method E 1354.1.3 This guide does not apply to tests that provide re

    11、sults inthe form of indices or binary results (for example, pass/fail).For example, the uncertainty of the Flame Spread Indexobtained according to Test Method E84cannot be determined.1.4 In some cases additional guidance is required to supple-ment this standard. For example, the expression of uncert

    12、aintyof heat release rate measurements at low levels requiresadditional guidance and uncertainties associated with samplingare not explicitly addressed.1.5 This fire standard cannot be used to provide quantitativemeasures.1This guide is under the jurisdiction ofASTM Committee E05 on Fire Standardsan

    13、d is the direct responsibility of Subcommittee E05.31 on Terminology andEditorial.Current edition approved Dec. 1, 2006. Published January 2007.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.2. Referenced Documents2.1 ASTM Standards

    14、:2E84 Test Method for Surface Burning Characteristics ofBuilding MaterialsE 176 Terminology of Fire StandardsE 230 Specification and Temperature-Electromotive Force(EMF) Tables for Standardized ThermocouplesE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Me

    15、thodE 1354 Test Method for Heat and Visible Smoke ReleaseRates for Materials and Products Using an Oxygen Con-sumption Calorimeter2.2 ISO Standards:3ISO/IEC 17025 General requirements for the competence oftesting and calibration laboratoriesGUM Guide to the expression of uncertainty in measure-ment3

    16、. Terminology3.1 Definitions: For definitions of terms used in this guideand associated with fire issues, refer to the terminologycontained in Terminology E 176. For definitions of terms usedin this guide and associated with precision issues, refer to theterminology contained in Practice E 691.3.2 D

    17、efinitions of Terms Specific to This Standard:3.2.1 accuracy of measurement, ncloseness of the agree-ment between the result of a measurement and the true value ofthe measurand.3.2.2 combined standard uncertainty, nstandard uncer-tainty of the result of a measurement when that result isobtained from

    18、 the values of a number of other quantities, equalto the positive square root of a sum of terms, the terms beingthe variances or covariances of these other quantities weightedaccording to how the measurement result varies with changesin these quantities.3.2.3 coverage factor, nnumerical factor used

    19、as a mul-tiplier of the combined standard uncertainty in order to obtainan expanded uncertainty.3.2.4 error (of measurement), nresult of a measurementminus the true value of the measurand; error consists of twocomponents: random error and systematic error.3.2.5 expanded uncertainty, nquantity defini

    20、ng an inter-val about the result of a measurement that may be expected toencompass a large fraction of the distribution of values thatcould reasonably be attributed to the measurand.3.2.6 measurand, nquantity subject to measurement.3.2.7 precision, nvariability of test result measurementsaround repo

    21、rted test result value.3.2.8 random error, nresult of a measurement minus themean that would result from an infinite number of measure-ments of the same measurand carried out under repeatabilityconditions.3.2.9 repeatability (of results of measurements),ncloseness of the agreement between the result

    22、s of succes-sive independent measurements of the same measurand carriedout under repeatability conditions.3.2.10 repeatability conditions, non identical test materialusing the same measurement procedure, observer(s), andmeasuring instrument(s) and performed in the same laboratoryduring a short perio

    23、d of time.3.2.11 reproducibility (of results of measurements), ncloseness of the agreement between the results of measure-ments of the same measurand carried out under reproducibilityconditions.3.2.12 reproducibility conditions, non identical test ma-terial using the same measurement procedure, but

    24、differentobserver(s) and measuring instrument(s) in different laborato-ries performed during a short period of time.3.2.13 standard deviation, na quantity characterizing thedispersion of the results of a series of measurements of thesame measurand; the standard deviation is proportional to thesquare

    25、 root of the sum of the squared deviations of themeasured values from the mean of all measurements.3.2.14 standard uncertainty, nuncertainty of the result ofa measurement expressed as a standard deviation.3.2.15 systematic error (or bias), nmean that would resultfrom an infinite number of measuremen

    26、ts of the same measur-and carried out under repeatability conditions minus the truevalue of the measurand.3.2.16 type A evaluation (of uncertainty), nmethod ofevaluation of uncertainty by the statistical analysis of series ofobservations.3.2.17 type B evaluation (of uncertainty), nmethod ofevaluatio

    27、n of uncertainty by means other than the statisticalanalysis of series of observations.3.2.18 uncertainty of measurement, nparameter, associ-ated with the result of a measurement, that characterizes thedispersion of the values that could reasonably be attributed tothe measurand.4. Summary of Guide4.

    28、1 This guide provides concepts and calculation methods toassess the uncertainty of measurements obtained from firetests.4.2 Appendix X1 of this guide contains an example toillustrate application of this guide by assessing the uncertaintyof heat release rate measured in the Cone Calorimeter (TestMeth

    29、od E 1354).5. Significance and Use5.1 Users of fire test data often need a quantitative indica-tion of the quality of the data presented in a test report. Thisquantitative indication is referred to as the “measurementuncertainty”. There are two primary reasons for estimating theuncertainty of fire t

    30、est results.5.1.1 ISO/IEC 17025 requires that competent testing andcalibration laboratories include uncertainty estimates for theresults that are presented in a report.5.1.2 Fire safety engineers need to know the quality of theinput data used in an analysis to determine the uncertainty ofthe outcome

    31、 of the analysis.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from International Organization f

    32、or Standardization, P.O. Box 56,CH-1211, Geneva 20, Switzerland.E25360626. Evaluating Standard Uncertainty6.1 A quantitative result of a fire test Y is generally notobtained from a direct measurement, but is determined as afunction f from N input quantities X1,XN:Y 5 f X1,X2,.,XN! (2)where:Y = measu

    33、rand;f = functional relationship between the measurand and theinput quantities; andXi= input quantities (i =1N).6.1.1 The input quantities are categorized as:6.1.1.1 quantities whose values and uncertainties are di-rectly determined from single observation, repeated observa-tion or judgment based on

    34、 experience, or6.1.1.2 quantities whose values and uncertainties arebrought into the measurement from external sources such asreference data obtained from handbooks.6.1.2 An estimate of the output, y, is obtained from Eq 2using input estimates x1, x2,xNfor the values of the N inputquantities:y 5 f x

    35、1,x2,., xN! (3)Substituting Eq 2 and 3 into Eq 1 leads to:y 5 Y 1e5Y 1e11e21 . 1eN(4)where:e1= contribution to the total measurement error from theerror associated with xi.6.2 A possible approach to determine the uncertainty of yinvolves a large number (n) of repeat measurements. The meanvalue of th

    36、e resulting distribution ( y ) is the best estimate of themeasurand. The experimental standard deviation of the mean isthe best estimate of the standard uncertainty of y, denoted byu(y):uy! =s2y! 5s2y!n5(k51nyk2 y!2nn 2 1!(5)where:u = standard uncertainty,s = experimental standard deviation,n = numb

    37、er of observations;yk=kthmeasured value, andy = mean of n measurements.The number of observations n shall be large enough to ensurethat y provides a reliable estimate of the expectation yof therandom variable y, and that s2( y ) provides a reliable estimateof the variance s2( y )=s(y)/n. If the prob

    38、ability distributionof y is normal, then the standard deviation of s ( y ) relative tos ( y ) is approximately 2(n-1)1/2. Thus, for n =10therelative uncertainty of s ( y ) is 24 %t, while for n =50itis10%. Additional values are given in Table E.1 in annex E of theGUM.6.3 Unfortunately it is often no

    39、t feasible or even possible toperform a sufficiently large number of repeat measurements. Inthose cases, the uncertainty of the measurement can bedetermined by combining the standard uncertainties of theinput estimates. The standard uncertainty of an input estimatexiis obtained from the distribution

    40、 of possible values of theinput quantity Xi. There are two types of evaluations dependingon how the distribution of possible values is obtained.6.3.1 Type A evaluation of standard uncertaintyA type Aevaluation of standard uncertainty of xiis based on thefrequency distribution, which is estimated fro

    41、m a series of nrepeated observations xi,k(k = 1 n). The resulting equation issimilar to Eq 5:uxi! =s2xi! 5s2xi!n5(k51nxi,k2 xi!2nn 2 1!(6)where:xi,k=kthmeasured value; andxi= mean of n measurements.6.3.2 Type B evaluation of standard uncertainty:6.3.2.1 A type B evaluation of standard uncertainty of

    42、 xiisnot based on repeated measurements but on an a priorifrequency distribution. In this case the uncertainty is deter-mined from previous measurements data, experience or generalknowledge, manufacturers specifications, data provided incalibration certificates, uncertainties assigned to reference d

    43、atataken from handbooks, etc.6.3.2.2 If the quoted uncertainty from a manufacturer speci-fication, handbook or other source is stated to be a particularmultiple of a standard deviation, the standard uncertainty uc(xi)is simply the quoted value divided by the multiplier. Forexample, the quoted uncert

    44、ainty is often at the 95 % level ofconfidence.Assuming a normal distribution this corresponds toa multiplier of two, that is, the standard uncertainty is half thequoted value.6.3.2.3 Often the uncertainty is expressed in the form ofupper and lower limits. Usually there is no specific knowledgeabout

    45、the possible values of Xiwithin the interval and one canonly assume that it is equally probable for Xito lie anywhere init. Fig. 1 shows the most common example where the corre-sponding rectangular distribution is symmetric with respect toits best estimate xi. The standard uncertainty in this case i

    46、sgiven by:uxi! 5DXi=3(7)where:DXi= half-width of the interval.FIG. 1 Rectangular DistributionE2536063If some information is known about the distribution of thepossible values of Xiwithin the interval, that knowledge is usedto better estimate the standard deviation.6.3.3 Accounting for multiple sourc

    47、es of errorThe uncer-tainty of an input quantity is sometimes due to multiple sourceserror. In this case, the standard uncertainty associated with eachsource of error has to be estimated separately and the standarduncertainty of the input quantity is then determined accordingto the following equatio

    48、n:uxi! 5(j51mujxi!#2(8)where:m = number of sources of error affecting the uncertainty ofxi; anduj, = standard uncertainty due to jthsource of error.7. Determining Combined Standard Uncertainty7.1 The standard uncertainty of y is obtained by appropri-ately combining the standard uncertainties of the

    49、input esti-mates x1, x2, xN. If all input quantities are independent, thecombined standard uncertainty of y is given by:ucy! 5(i5lNFfXi|xiG2u2xi! (i5lNciuxi!#2(9)where:uc= combined standard uncertainty, andci,= sensitivity coefficients.Eq 9 is referred to as the law of propagation of uncertainty andbased on a first-order Taylor series approximation of Y = f (X1,X2,XN). When the nonlinearity of f is significant, higher-order terms must be included (see clause 5.1.2 in the GUM fordetails).7.2 When the input quantities a


    注意事项

    本文(ASTM E2536-2006 Standard Guide for Assessment of Measurement Uncertainty in Fire Tests《评估防火试验中不确定度测量用标准指南》.pdf)为本站会员(eveningprove235)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开