欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E2465-2011 Standard Test Method for Analysis of Ni-Base Alloys by Wavelength-Dispersive X-Ray Fluorescence Spectrometry《用波长色散X射线荧光光谱法分析镍基合金的标准试验方法》.pdf

    • 资源ID:531182       资源大小:108.19KB        全文页数:11页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E2465-2011 Standard Test Method for Analysis of Ni-Base Alloys by Wavelength-Dispersive X-Ray Fluorescence Spectrometry《用波长色散X射线荧光光谱法分析镍基合金的标准试验方法》.pdf

    1、Designation: E2465 11Standard Test Method forAnalysis of Ni-Base Alloys by Wavelength-Dispersive X-RayFluorescence Spectrometry1This standard is issued under the fixed designation E2465; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisi

    2、on, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the analysis of Ni-base alloysby wavelength dispersive X-ray Fluorescence Spec

    3、trometry forthe determination of the following elements:Element Concentration RangeManganese 0.17 to 1.6 %Phosphorus 0.005 to 0.015 %Silicon 0.02 to 0.6 %Chromium 11 to 22 %Nickel 31 to 77 %Aluminum 0.12 to 1.3 %Molybdenum 0.045 to 10 %Copper 0.014 to 2.5 %Titanium 0.20 to 3.0 %Niobium 1.43 to 5.3 %

    4、Iron 2 to 46 %Tungsten 0.016 to 0.50 %Cobalt 0.014 to 0.35 %NOTE 1Unless exceptions are noted, concentration ranges can beextended by the use of suitable reference materials. Once these elementranges are extended they must be verified by some experimental means.This could include but not limited to

    5、Gage Repeatability and Reproduc-ibility studies and/or Inter-laboratory Round Robin studies. Once thesestudies are completed, they will satisfy the ISO 17025 requirements forcapability.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is the

    6、responsibility of the user of this standard to establish appro-priate safety and health practices and to determine theapplicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E135 Terminology Relating to Analytical Chemistry forMetals, Ores, and Related Materia

    7、lsE305 Practice for Establishing and Controlling AtomicEmission Spectrochemical Analytical CurvesE1361 Guide for Correction of Interelement Effects inX-Ray Spectrometric AnalysisE1601 Practice for Conducting an Interlaboratory Study toEvaluate the Performance of an Analytical MethodE1622 Practice fo

    8、r Correction of Spectral Line Overlap inWavelength-Dispersive X-Ray Spectrometry32.2 Other Documents:ISO 17025 General requirements for the competence oftesting and calibration laboratories3. Terminology3.1 Definitions: For definitions of terms used in this testmethod, refer to Terminology E135.4. S

    9、ummary of Test Method4.1 The test specimen is finished to a clean, uniform surface,then irradiated with an X-ray beam of high energy. Thesecondary X-rays produced are dispersed by means of crystalsand the intensities are measured by suitable detectors atselected wavelengths. The outputs of the detec

    10、tors in voltagepulses are counted. Radiation measurements are made based onthe time required to reach a fixed number of counts, or on thetotal counts obtained for a fixed time (generally expressed incounts or kilocounts per unit time). Concentrations of theelements are determined by relating the mea

    11、sured radiation ofunknown specimens to analytical curves prepared with suitablereference materials. Either a fixed-channel (simultaneous)spectrometer or a sequential spectrometer, or an instrumentcombining both fixed-channels and one or more goniometerscan be used.5. Significance and Use5.1 This pro

    12、cedure is suitable for manufacturing control andfor verifying that the product meets specifications. It providesrapid, multi-element determinations with sufficient accuracy toassure product quality. The analytical performance data in-cluded may be used as a benchmark to determine if similarX-ray spe

    13、ctrometers provide equivalent precision and accu-racy, or if the performance of a particular spectrometer haschanged.1This test method is under the jurisdiction of ASTM Committee E01 onAnalytical Chemistry for Metals, Ores, and Related Materials and is the directresponsibility of Subcommittee E01.08

    14、 on Ni and Co and High Temperature Alloys.Current edition approved May 1, 2011. Published June 2011. Originallyapproved in 2006. Last previous edition approved in 2006 as E2465 06. DOI:10.1520/E2465-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Serv

    15、ice at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C70

    16、0, West Conshohocken, PA 19428-2959, United States.6. Interferences6.1 Interelement effects, or matrix effects, exist for some ofthe elements listed. Mathematical correction may be used tosolve for these elements. Various mathematical correctionprocedures are commonly utilized. See Guide E1361 andPr

    17、actice E1622. Any of these procedures that achieves analyti-cal accuracy equivalent to that provided by this test method isacceptable.7. Apparatus7.1 Specimen Preparation Equipment:7.1.1 Surface Grinder or Sander With Abrasive Belts orDisks, or Lathe, capable of providing a flat, uniform surface ont

    18、he reference materials and test specimens. Aluminum oxideand zirconium oxide belts and discs with a grit size of between60 and 180 have been found suitable.7.2 Excitation Source:7.2.1 Tube Power Supply, providing a constant potential orrectified power of sufficient energy to produce secondaryradiati

    19、on of the specimen for the elements specified. Thegenerator may be equipped with a line voltage regulator andcurrent stabilizer.7.2.2 X-ray Tubes, with targets of various high-purity ele-ments that are capable of continuous operation at requiredpotentials and currents and that will excite the elemen

    20、ts to bedetermined.7.3 Spectrometer, designed for X-ray fluorescence analysisand equipped with specimen holders and a specimen chamber.The chamber shall contain a specimen spinner, and must beequipped for vacuum or helium-flushed operation for thedetermination of elements of atomic number 20 (calciu

    21、m) orlower.7.3.1 Analyzing Crystals, flat or curved crystals with opti-mized capability for the diffraction of the wavelengths ofinterest. The use of synthetic multilayer structures can also befound in some state-of-the-art-equipment.7.3.2 Collimators or Slits, for controlling the divergence ofthe c

    22、haracteristic X-rays. Use in accordance with the equip-ment manufacturers recommendations.7.3.3 Detectors, sealed-gas, gas-flow scintillation countersor equivalent.7.3.4 Vacuum System, providing for the determination ofelements whose radiation is absorbed by air (for example,silicon, phosphorus, and

    23、 sulfur). The system shall consist of avacuum pump, gage, and electrical controls to provide auto-matic pump down of the optical path, and maintain a controlledpressure, usually 13Pa (100 mm Hg) or less, controlled to 63Pa (20 mm Hg). A helium-flushed system is an alternative to avacuum system.7.4 M

    24、easuring System, consisting of electronic circuits ca-pable of amplifying and integrating pulses received from thedetectors. For some measurements, a pulse height selector inconjunction with the detectors may be used to remove highorder lines and background. The system shall be equipped withan appro

    25、priate device.8. Reagents and Materials8.1 Detector GasesOnly gas-flow proportional countersrequire a detector gas. Use the gas and purity of gas specifiedby the instrument manufacturer. Typical gases specified includeP-10 or P-5. P-10 consists of a mixture of 90 % argon and 10% methane and P-5 cons

    26、ists of a mixture of 95 % argon and 5% methane. Other gases may be specified as well.9. Reference Materials9.1 Certified Reference Materials are available from na-tional metrology institutes, international research institutes,and commercial sources.9.2 Reference Materials with matrices similar to th

    27、at of thetest specimens and containing varying amounts of the elementsin the scope of this test method may be used provided theyhave been analyzed using validated standard methods of test.These reference materials shall be homogeneous and free ofvoids and porosity.9.3 The reference materials shall c

    28、over the concentrationranges of the elements being sought. A minimum of threereference materials shall be used for each element. A greaternumber of calibrants may be required if the analyst chooses toperform mathematical corrections for interelement effects. SeeGuide E1361.10. Hazards10.1 OSHA Stand

    29、ards for ionizing radiation4shall be ob-served at all X-ray emission spectrometer installations. It isalso recommended that operating and maintenance personnelfollow the guidelines of safe operating procedures given incurrent handbooks and publications from National Institute ofStandards and Technol

    30、ogy and the U.S. Government PrintingOffice, or similar handbooks on radiation safety.10.2 Exposure to excessive quantities of high energy radia-tion such as those produced by X-ray spectrometers is injuriousto health. The operator should take appropriate actions to avoidexposing any part of their bo

    31、dy, not only to primary X-rays, butalso to secondary or scattered radiation that might be present.The X-ray spectrometer should be operated in accordance withthe regulations governing the use of ionizing radiation. Manu-facturers of x-ray fluorescence spectrometers generally buildappropriate shieldi

    32、ng/safety interlocks into x-ray equipmentduring manufacturing that minimize the risk of excessiveradiation exposure to operators. Operators should not attemptto bypass or defeat these safety devices. Only authorizedpersonnel should service x-ray spectrometers.10.3 Monitoring Devices, either film bad

    33、ges or dosimeters5may be worn by all operating and maintenance personnel.Safety regulations shall conform to applicable local, state, andfederal regulations.11. Preparation of Reference Materials and TestSpecimens11.1 The analyst must choose a measurement area ordiameter from the options built into

    34、the spectrometer. All test4Federal Register, Vol. 36, No. 105, May 1971, Section 1910.96 or of latestissue of Subpart G, or National Bureau of Standards Handbook 111, ANSIN43.2-1971, available from Superintendent of Documents, U.S.Government Print-ing Office, Washington DC 20025.5Available from Siem

    35、ens Gammasonics, Inc., 2000 Nuclear Drive, Des PlainesIl 60018.E2465 112specimens and reference materials must have a flat surface ofgreater diameter than the chosen viewed area.11.2 Prepare the reference materials and test specimens toprovide a clean, flat uniform surface to be exposed to the X-ray

    36、beam. One surface of a reference material may be designatedby the producer as the certified surface. The same preparationmedium shall be used for all reference materials and testspecimens.11.3 Refinish the surface of the reference materials and testspecimens as needed to eliminate oxidation.12. Prep

    37、aration of Apparatus12.1 Prepare and operate the spectrometer in accordancewith the manufacturers instructions.NOTE 2It is not within the scope of this test method to prescribeminute details relative to the preparation of the apparatus. For a descrip-tion and specific details concerning the operatio

    38、n of a particular spectrom-eter, refer to the manufacturers manual.12.1.1 Start-upTurn on the power supply and electroniccircuits and allow sufficient time for instrument warm-up priorto taking measurements.12.2 Tube Power SupplyThe power supply conditionsshould be set in accordance with the manufac

    39、turers recom-mendations.12.2.1 The voltage and current established as optimum forthe X-ray tube power supply in an individual laboratory shallbe reproduced for subsequent measurements.12.3 Proportional Counter Gas FlowWhen a gas-flowproportional counter is used, adjust the flow of the P-10 gas inacc

    40、ordance with the equipment manufacturers instructions.When changing P-10 tanks, the detectors should be adequatelyflushed with detector gas before the instrument is used. Afterchanging P-10 tanks, check the pulse height selector inaccordance with the manufacturers instructions.12.4 Measurement Condi

    41、tionsThe K-L2,3(Ka) lines foreach element are used, except for tungsten. For tungsten, theL3-M5(La) line is used. When using a sequential spectrometer,measurement angles shall be calibrated in accordance with themanufacturers guidelines.12.4.1 Crystals and DetectorsThe following crystals anddetector

    42、s are suggested for the elements indicated:Element Crystal DetectorChromium L1,L2 SP,Sc,FPCobalt L1,L2 SP,Sc,FPCopper L1,L2 SP,Sc,FPManganese L1,L2 SP,Sc,FPMolybdenum L1,L2 ScNickel L1,L2 SP,Sc,FPNiobium L1,L2 ScPhosphorus Ge FP,SPSilicon PET,InSb FP,SPTitanium L1,L2 SP,Sc,FPAluminum PET Sc,FPIron L

    43、1,L2 SP,ScTungsten L1,L2 SP,ScL1 = LiF200 SP = Sealed ProportionalL2 = LiF220 Sc = ScintillationFP = Flow Proportional12.4.2 Counting TimeCollect a sufficient number ofcounts so that the precision of the analysis will not be affectedby the variation in the counting statistics. A minimum of10,000 cou

    44、nts is required for one percent relative precision ofthe counting statistics and 40,000 for one-half percent relative.If fixed time measurements are used, the measurement timescan be derived from the measured intensity (counts per second)and the minimum number of required counts (that is, 10,000 or4

    45、0,000). Alternatively, measurement times of 10 s for each ofthe elements are a good starting point.13. Calibration and Standardization13.1 Calibration (Preparation of Analytical Curves)Using the conditions given in Section 12, measure a series ofreference materials that cover the required concentrat

    46、ionranges. Use at least three reference materials for each element.Prepare an analytical curve for each element being determined(refer to Practice E305). For information on correction ofinterelement effects in X-ray Spectrometric Analysis refer toGuide E1361. Information on correction of spectral li

    47、neoverlap in wavelength dispersive X-ray spectrometry can befound in Practice E1622.13.2 Standardization (Analytical Curve Adjustment)Using a control reference material, check the calibration of theX-ray spectrometer at a frequency consistent with SPC practiceor when the detector gas or major compon

    48、ents have beenchanged. If the calibration check indicates that the spectrom-eter has drifted, make appropriate adjustments in accordancewith the instructions in the manufacturers manual. Refer toPractice E305 for frequency of verification of standardization.14. Procedure14.1 Specimen LoadingPlace th

    49、e reference materials andtest specimens in the appropriate specimen holding container.If the spectrometer is equipped with an automated loadingdevice, loading and unloading all specimens from the sameholder may improve repeatability. The container shall have asuitable opening to achieve the required precision in anacceptable amount of time. The holder must be equipped tokeep the specimen from moving inside the holder.14.2 ExcitationExpose the specimen to primary X radia-tion in accordance with Section 12.14.3 Radiation MeasurementsObtain and record thecounting


    注意事项

    本文(ASTM E2465-2011 Standard Test Method for Analysis of Ni-Base Alloys by Wavelength-Dispersive X-Ray Fluorescence Spectrometry《用波长色散X射线荧光光谱法分析镍基合金的标准试验方法》.pdf)为本站会员(ownview251)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开