欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E1921-2009 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf

    • 资源ID:529801       资源大小:380.23KB        全文页数:23页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E1921-2009 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf

    1、Designation: E 1921 09Standard Test Method forDetermination of Reference Temperature, To, for FerriticSteels in the Transition Range1This standard is issued under the fixed designation E 1921; the number immediately following the designation indicates the year oforiginal adoption or, in the case of

    2、revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of a referencetemperature, To, which characterizes the

    3、 fracture toughness offerritic steels that experience onset of cleavage cracking atelastic, or elastic-plastic KJcinstabilities, or both. The specifictypes of ferritic steels (3.2.1) covered are those with yieldstrengths ranging from 275 to 825 MPa (40 to 120 ksi) andweld metals, after stress-relief

    4、 annealing, that have 10 % orless strength mismatch relative to that of the base metal.1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B), and standard or disk-shapedcompact tension specimens, C(T) or DC(T). A range ofspecimen sizes with proportional dimensions is

    5、recommended.The dimension on which the proportionality is based isspecimen thickness.1.3 Median KJcvalues tend to vary with the specimen typeat a given test temperature, presumably due to constraintdifferences among the allowable test specimens in 1.2. Thedegree of KJcvariability among specimen type

    6、s is analyticallypredicted to be a function of the material flow properties (1)2and decreases with increasing strain hardening capacity for agiven yield strength material. This KJcdependency ultimatelyleads to discrepancies in calculated Tovalues as a function ofspecimen type for the same material.

    7、Tovalues obtained fromC(T) specimens are expected to be higher than Tovaluesobtained from SE(B) specimens. Best estimate comparisons ofseveral materials indicate that the average difference betweenC(T) and SE(B)-derived Tovalues is approximately 10C (2).C(T) and SE(B) Todifferences up to 15C have al

    8、so beenrecorded (3). However, comparisons of individual, smalldatasets may not necessarily reveal this average trend. Datasetswhich contain both C(T) and SE(B) specimens may generateToresults which fall between the Tovalues calculated usingsolely C(T) or SE(B) specimens. It is therefore stronglyreco

    9、mmended that the specimen type be reported along withthe derived Tovalue in all reporting, analysis, and discussion ofresults. This recommended reporting is in addition to therequirements in 11.1.1.1.4 Requirements are set on specimen size and the numberof replicate tests that are needed to establis

    10、h acceptablecharacterization of KJcdata populations.1.5 Tois dependent on loading rate. Tois evaluated for aquasi-static loading rate range with 0.1 2MPa=m/s).1.6 The statistical effects of specimen size on KJcin thetransition range are treated using weakest-link theory (4)applied to a three-paramet

    11、er Weibull distribution of fracturetoughness values. A limit on KJcvalues, relative to thespecimen size, is specified to ensure high constraint conditionsalong the crack front at fracture. For some materials, particu-larly those with low strain hardening, this limit may not besufficient to ensure th

    12、at a single-parameter (KJc) adequatelydescribes the crack-front deformation state (5).1.7 Statistical methods are employed to predict the transi-tion toughness curve and specified tolerance bounds for 1Tspecimens of the material tested. The standard deviation of thedata distribution is a function of

    13、 Weibull slope and median KJc.The procedure for applying this information to the establish-ment of transition temperature shift determinations and theestablishment of tolerance limits is prescribed.1.8 The fracture toughness evaluation of nonuniform mate-rial is not amenable to the statistical analy

    14、sis methods em-ployed in this standard. Materials must have macroscopicallyuniform tensile and toughness properties. For example, multi-pass weldments can create heat-affected and brittle zones withlocalized properties that are quite different from either the bulkmaterial or weld. Thick section stee

    15、l also often exhibits somevariation in properties near the surfaces. Metallography andinitial screening may be necessary to verify the applicability ofthese and similarly graded materials. Particular notice shouldbe given to the 2% and 98% tolerance bounds on KJcpresented1This test method is under t

    16、he jurisdiction of ASTM Committee E08 on Fatigueand Fracture and is the direct responsibility of E08.07 on Fracture Mechanics.Current edition approved Jan. 1, 2009. Published March 2009. Originallyapproved in 1997. Last previous edition approved in 2008 as E 1921 08a1.2The boldface numbers in parent

    17、heses refer to the list of references at the end ofthis standard.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.in 9.3. Data falling outside these bounds may indicate nonuni-form material properties.1.9 This standard does not purpor

    18、t to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3E4 Pr

    19、actices for Force Verification of Testing MachinesE 8/E 8M Test Methods for Tension Testing of MetallicMaterialsE23 Test Methods for Notched Bar Impact Testing ofMetallic MaterialsE74 Practice of Calibration of Force-Measuring Instru-ments for Verifying the Force Indication of Testing Ma-chinesE 208

    20、 Test Method for Conducting Drop-Weight Test toDetermine Nil-Ductility Transition Temperature of FerriticSteelsE 399 Test Method for Linear-Elastic Plane-Strain FractureToughness KIcof Metallic MaterialsE 436 Test Method for Drop-Weight Tear Tests of FerriticSteelsE 561 Test Method for K-R Curve Det

    21、erminationE 1820 Test Method for Measurement of Fracture Tough-nessE 1823 Terminology Relating to Fatigue and Fracture Test-ing3. Terminology3.1 Terminology given in Terminology E 1823 is applicableto this test method.3.2 Definitions:3.2.1 ferritic steelsare typically carbon, low-alloy, andhigher al

    22、loy grades. Typical microstructures are bainite, tem-pered bainite, tempered martensite, and ferrite and pearlite.Allferritic steels have body centered cubic crystal structures thatdisplay ductile-to-cleavage transition temperature fracturetoughness characteristics. See also Test Methods E 23, E 208

    23、and E 436.NOTE 1This definition is not intended to imply that all of the manypossible types of ferritic steels have been verified as being amenable toanalysis by this test method.3.2.2 stress-intensity factor, KFL 3/2the magnitude ofthe mathematically ideal crack-tip stress field coefficient (stress

    24、field singularity) for a particular mode of crack-tip regiondeformation in a homogeneous body.3.2.3 DiscussionIn this test method, Mode I is assumed.See Terminology E 1823 for further discussion.3.2.4 J-integral, JFL1a mathematical expression; aline or surface integral that encloses the crack front

    25、from onecrack surface to the other; used to characterize the localstress-strain field around the crack front (6). See TerminologyE 1823 for further discussion.3.3 Definitions of Terms Specific to This Standard:3.3.1 control force, PmFa calculated value of maximumforce used in Test Method E 1820, Eqs

    26、. A1.1 and A2.1 tostipulate allowable precracking limits.3.3.1.1 DiscussionIn this method, Pmis not used forprecracking, but is used as a minimum force value above whichpartial unloading is started for crack growth measurement.3.3.2 crack initiationdescribes the onset of crack propa-gation from a pr

    27、eexisting macroscopic crack created in thespecimen by a stipulated procedure.3.3.3 effective modulus, EeFL2an elastic modulus thatcan be used with experimentally determined elastic complianceto effect an exact match to theoretical (modulus-normalized)compliance for the actual initial crack size, ao.

    28、3.3.4 effective yield strength, sYFL-2, an assumed valueof uniaxial yield strength that represents the influence of plasticyielding upon fracture test parameters.3.3.4.1 DiscussionIt is calculated as the average of the 0.2% offset yield strength sYS, and the ultimate tensile strength,sTSas follows:s

    29、Y5 sYS1sTS!23.3.5 elastic modulus, E8FL2a linear-elastic factor re-lating stress to strain, the value of which is dependent on thedegree of constraint. For plane stress, E8 = E is used, and forplane strain, E/(1 v2) is used, with E being Youngs modulusand v being Poissons ratio.3.3.6 elastic plastic

    30、 JcFL1J-integral at the onset ofcleavage fracture.3.3.7 elastic-plastic KJFL3/2An elastic-plastic equiva-lent stress intensity factor derived from the J-integral.3.3.7.1 DiscussionIn this test method, KJalso implies astress intensity factor determined at the test termination pointunder conditions de

    31、termined to be invalid by 8.9.2.3.3.8 elastic-plastic KJcFL3/2an elastic-plastic equiva-lent stress intensity factor derived from the J-integral at thepoint of onset of cleavage fracture, Jc.3.3.9 equivalent value of median toughness, KJcmed!eqFL-3/2an equivalent value of the median toughness for am

    32、ulti-temperature data set.3.3.10 Eta (h)a dimensionless parameter that relates plas-tic work done on a specimen to crack growth resistance definedin terms of deformation theory J-integral (7).3.3.11 failure probability, pfthe probability that a singleselected specimen chosen at random from a populat

    33、ion ofspecimens will fail at or before reaching the KJcvalue ofinterest.3.3.12 initial ligament length, boL the distance from theinitial crack tip, ao, to the back face of a specimen.3.3.13 load-line displacement rate,DLLLT-1rate of in-crease of specimen load-line displacement.3.3.14 pop-ina discont

    34、inuity in a force versus displace-ment test record (8).3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.E19210

    35、923.3.14.1 DiscussionApop-in event is usually audible, andis a sudden cleavage crack initiation event followed by crackarrest.Atest record will show increased displacement and dropin applied force if the test frame is stiff. Subsequently, the testrecord may continue on to higher forces and increased

    36、 dis-placement.3.3.15 precracked Charpy specimenSE(B) specimen withW = B = 10 mm (0.394 in.).3.3.16 provisional reference temperature, (ToQ) CInterim Tovalue calculated using the standard test methoddescribed herein. If all validity criteria are met then To=ToQ3.3.17 reference temperature, ToCThe te

    37、st temperatureat which the median of the KJcdistribution from 1T sizespecimens will equal 100 MPa=m (91.0 ksi=in.).3.3.18 SE(B) specimen span, SLthe distance betweenspecimen supports (See Test Method E 1820 Fig. 3).3.3.19 specimen thickness, BLthe distance between theparallel sides of a test specime

    38、n as depicted in Figs. 1-3.3.3.19.1 DiscussionIn the case of side-grooved speci-mens, the net thickness, BN, is the distance between the roots ofthe side-groove notches.3.3.20 specimen size, nTa code used to define specimendimensions, where n is expressed in multiples of 1 in.3.3.20.1 DiscussionIn t

    39、his method, specimen proportion-ality is required. For compact specimens and bend bars,specimen thickness B=ninches.3.3.21 temperature, To,XestCestimated value of the refer-ence temperature corresponding to an elevated loading rate X,to be used only for test temperature selection in accordancewith 8

    40、.4.2.3.3.22 temperature, TQCFor KJcvalues that are devel-oped using specimens or test practices, or both, that do notconform to the requirements of this test method, a temperatureat which KJc (med)= 100 MPa=m is defined as TQ.TQis not aprovisional value of To.3.3.23 test loading rate KFL-3/2T-1rate

    41、of increase ofapplied stress intensity factor.3.3.23.1 DiscussionIt is generally evaluated as the ratiobetween KJcand the corresponding time to cleavage. For testswhere partial unloading compliance is used and provided theunloading and reloading rates are constant during the linearelastic portion of

    42、 the test, the ratio between stress intensityfactor and time within this linear elastic portion shall be used.3.3.24 time to control force, tmT,time to Pm.3.3.25 Weibull fitting parameter, K0a scale parameterlocated at the 63.2 % cumulative failure probability level (9).KJc=K0when pf= 0.632.3.3.26 W

    43、eibull slope, bwith pfand KJcdata pairs plotted inlinearized Weibull coordinates obtainable by rearranging Eq.15, b is the slope of a line that defines the characteristics of thetypical scatter of KJcdata.3.3.26.1 DiscussionA Weibull slope of 4 is used exclu-sively in this method.3.3.27 yield streng

    44、th, sYSFL2a value of materialstrength at 0.2 % plastic strain at the test temperature asdetermined by tensile testing.4. Summary of Test Method4.1 This test method involves the testing of notched andfatigue precracked bend or compact specimens in a tempera-ture range where either cleavage cracking o

    45、r crack pop-indevelop during the loading of specimens. Crack aspect ratio,a/W, is nominally 0.5. Specimen width in compact specimensis two times the thickness. In bend bars, specimen width can beeither one or two times the thickness.4.2 Force versus displacement across the notch at a speci-fied loca

    46、tion is recorded by autographic recorder or computerdata acquisition, or both. Fracture toughness is calculated at adefined condition of crack instability. The J-integral value atinstability, Jc, is calculated and converted into its equivalent inunits of stress intensity factor, KJc. Validity limits

    47、 are set on thesuitability of data for statistical analyses.4.3 Tests that are replicated at least six times can be used toestimate the median KJcof the Weibull distribution for the datapopulation (10). Extensive data scatter among replicate tests isexpected. Statistical methods are used to characte

    48、rize thesedata populations and to predict changes in data distributionswith changed specimen size.4.4 The statistical relationship between specimen size andKJcfracture toughness can be assessed using weakest-linktheory, thereby providing a relationship between the specimensize and KJc(4). Limits are

    49、 placed on the fracture toughnessrange over which this model can be used.4.5 For definition of the toughness transition curve, a mastercurve concept is used (11, 12). The position of the curve on thetemperature coordinate is established from the experimentaldetermination of the temperature, designated To, at which themedian KJcfor 1T size specimens is 100 MPa=m (91.0ksi=in.). Selection of a test temperature close to that at whichthe median KJcvalue will be 100 MPa=m is encouraged


    注意事项

    本文(ASTM E1921-2009 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf)为本站会员(outsidejudge265)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开