欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E1529-2013 Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural Members and Assemblies《测定大型碳氢化合物储槽火灾对结构构件和组件作用的标准试验方法》.pdf

    • 资源ID:528882       资源大小:371.11KB        全文页数:25页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E1529-2013 Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural Members and Assemblies《测定大型碳氢化合物储槽火灾对结构构件和组件作用的标准试验方法》.pdf

    1、Designation: E1529 13 An American National StandardStandard Test Methods forDetermining Effects of Large Hydrocarbon Pool Fires onStructural Members and Assemblies1This standard is issued under the fixed designation E1529; the number immediately following the designation indicates the year oforigina

    2、l adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONThe performance of structural members and assemblies exposed to fi

    3、re conditions resulting fromlarge, free-burning (that is, outdoors), fluid-hydrocarbon-fueled pool fires is of concern in the designof hydrocarbon processing industry (HPI) facilities and other facilities subject to these types of fires.In recognition of this unique fire protection problem, it is ge

    4、nerally required that critical structuralmembers and assemblies be of fire-resistant construction.Historically, such requirements have been based upon tests conducted in accordance with TestMethods E119, the only available standardized test for fire resistant construction. However, theexposure speci

    5、fied in Test Methods E119 does not adequately characterize large hydrocarbon poolfires. Test Methods E119 is used for representation of building fires where the primary fuel is solid innature, and in which there are significant constraints on the movement of air to the fire, and thecombustion produc

    6、ts away from the fire (that is, through doors, windows). In contrast, neithercondition is typical of large hydrocarbon pool fires (see Appendix X1 on Commentary).One of the most distinguishing features of the pool fire is the rapid development of hightemperatures and heat fluxes that can subject exp

    7、osed structural members and assemblies to a thermalshock much greater than that associated with Test Methods E119. As a result, it is important that fireresistance requirements for HPI assemblies of all types of materials be evaluated and specified inaccordance with a standardized test that is more

    8、representative of the anticipated fire conditions. Sucha standard is found in the test methods herein.1. Scope1.1 The test methods described in this fire-test-responsestandard are used for determining the fire-test response ofcolumns, girders, beams or similar structural members, andfire-containment

    9、 walls, of either homogeneous or compositeconstruction, that are employed in HPI or other facilitiessubject to large hydrocarbon pool fires.1.2 It is the intent that tests conducted in accordance withthese test methods will indicate whether structural members ofassemblies, or fire-containment wall a

    10、ssemblies, will continueto perform their intended function during the period of fireexposure. These tests shall not be construed as having deter-mined suitability for use after fire exposure.1.3 These test methods prescribe a standard fire exposurefor comparing the relative performance of different

    11、structuraland fire-containment wall assemblies under controlled labora-tory conditions. The application of these test results to predictthe performance of actual assemblies when exposed to largepool fires requires a careful engineering evaluation.1.4 These test methods provide for quantitative heat

    12、fluxmeasurements during both the control calibration and theactual test. These heat flux measurements are being made tosupport the development of design fires and the use of firesafety engineering models to predict thermal exposure andmaterial performance in a wide range of fire scenarios.1.5 These

    13、test methods are useful for testing other itemssuch as piping, electrical circuits in conduit, floors or decks,and cable trays. Testing of these types of items requiresdevelopment of appropriate specimen details and end-point orfailure criteria. Such failure criteria and test specimen descrip-tions

    14、are not provided in these test methods.1.6 LimitationsThese test methods do not provide thefollowing:1.6.1 Full information on the performance of assembliesconstructed with components or of dimensions other than thosetested.1These test methods are under the jurisdiction ofASTM Committee E05 on FireS

    15、tandards and are the direct responsibility of Subcommittee E05.11 on FireResistance.Current edition approved July 1, 2013. Published August 2013. Originallyapproved in 1993. Last previous edition approved in 2010 as E1529 10. DOI:10.1520/E1529-13.Copyright ASTM International, 100 Barr Harbor Drive,

    16、PO Box C700, West Conshohocken, PA 19428-2959. United States11.6.2 An evaluation of the degree to which the assemblycontributes to the fire hazard through the generation of smoke,toxic gases, or other products of combustion.1.6.3 Simulation of fire behavior of joints or connectionsbetween structural

    17、 elements such as beam-to-column connec-tions.1.6.4 Measurement of flame spread over the surface of thetest assembly.1.6.5 Procedures for measuring the test performance ofother structural shapes (such as vessel skirts), equipment (suchas electrical cables, motor-operated valves, etc.), or itemssubje

    18、ct to large hydrocarbon pool fires, other than thosedescribed in 1.1.1.6.6 The erosive effect that the velocities or turbulence, orboth, generated in large pool fires has on some fire protectionmaterials.1.6.7 Full information on the performance of assemblies attimes less than 5 min because the rise

    19、 time called out in Section5 is longer than that of a real fire.1.7 These test methods do not preclude the use of a real fireor any other method of evaluating the performance of structuralmembers and assemblies in simulated fire conditions. Any testmethod that is demonstrated to comply with Section

    20、5 isacceptable.1.8 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.9 This standard is used to measure and describe theresponse of mater

    21、ials, products, or assemblies to heat andflame under controlled conditions, but does not by itselfincorporate all factors required for fire hazard or fire riskassessment of the materials, products, or assemblies underactual fire conditions.1.10 This standard does not purport to address all of thesaf

    22、ety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.11 The text of this standard references notes and footnoteswhich provide

    23、 explanatory information. These notes and foot-notes (excluding those in tables and figures) shall not beconsidered as requirements of the standard.2. Referenced Documents2.1 ASTM Standards:2B117 Practice for Operating Salt Spray (Fog) ApparatusD822 Practice for Filtered Open-Flame Carbon-Arc Expo-s

    24、ures of Paint and Related CoatingsE119 Test Methods for Fire Tests of Building Constructionand MaterialsE176 Terminology of Fire StandardsE457 Test Method for Measuring Heat-Transfer Rate Usinga Thermal Capacitance (Slug) CalorimeterE459 Test Method for Measuring Heat Transfer Rate Usinga Thin-Skin

    25、CalorimeterE511 Test Method for Measuring Heat Flux Using a Copper-Constantan Circular Foil, Heat-Flux TransducerE814 Test Method for Fire Tests of Penetration FirestopSystemsE2683 Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages2.2 Code of Federal Regulation

    26、s:346 CFR 164.007 Structural Insulations2.3 IMO Documents:4IMO A7542.4 ISO Standard:5ISO 834-1 Fire Resistance Tests Elements of BuildingConstruction Part 1: General Requirements3. Terminology3.1 DefinitionsRefer to Terminology E176 for definitionsof terms used in these test methods.3.2 Definitions

    27、of Terms Specific to This Standard:3.2.1 total cold wall heat fluxthe heat flux that would betransferred to an object whose temperature is 70F (21C).4. Summary of Test Methods4.1 A standard fire exposure of controlled extent and sever-ity is specified.The test setup will provide an average total col

    28、dwall heat flux on all exposed surfaces of the test specimen of50 000 Btu/ft2h 6 2500 Btu/ft2h (158 kW/m26 8kW/m2).The heat flux shall be attained within the first 5 min of testexposure and maintained for the duration of the test. Thetemperature of the environment that generates the heat flux ofproc

    29、edures in 6.2 shall be at least 1500F (815C) after the first3 min of the test and shall be between 1850F (1010C) and2150F (1180C) at all times after the first 5 min of the test.Performance is defined as the time period during whichstructural members or assemblies will continue to perform theirintend

    30、ed function when subjected to fire exposure. The resultsare reported in terms of time increments such as12 h,34 h, 1h, 112 h, etc.4.1.1 These test methods require quantitative measurementsof thermal exposure during both furnace calibration and actualtesting.4.1.2 These test methods are cited as the

    31、“Standard LargeHydrocarbon Pool Fire Tests.”5. Significance and Use5.1 These test methods are intended to provide a basis forevaluating the time period during which a beam, girder,column, or similar structural assembly, or a nonbearing wall,2For referenced ASTM standards, visit the ASTM website, www

    32、.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700Robbins Ave., Philadelphia, PA 19111-5094, A

    33、ttn: NPODS.4Available from the International Maritime Organization (IMO), EnvironmentalStandards Division (CG-5224), U.S. Coast Guard Headquarters, 2100 Second StreetSW, Washington, DC 20593; http:/www.uscg.mil/environmental_standards/5Available from American National Standards Institute (ANSI), 25

    34、W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.E1529 132will continue to perform its intended function when subjectedto a controlled, standardized fire exposure.5.1.1 In particular, the selected standard exposure conditionsimulates the condition of total continuous engulfment of amemb

    35、er or assembly in the luminous flame (fire plume) area ofa large free-burning-fluid-hydrocarbon pool fire. The standardfire exposure is basically defined in terms of the total fluxincident on the test specimen together with appropriate tem-perature conditions. Quantitative measurements of the therma

    36、lexposure (total heat flux) are required during both furnacecalibration and actual testing.5.1.2 It is recognized that the thermodynamic properties offree-burning, hydrocarbon fluid pool fires have not beencompletely characterized and are variable depending on thesize of the fire, the fuel, environm

    37、ental factors (such as windconditions), the physical relationship of the structural memberto the exposing fire, and other factors.As a result, the exposurespecified in these test methods is not necessarily representativeof all the conditions that exist in large hydrocarbon pool fires.The specified s

    38、tandard exposure is based upon the bestavailable information and testing technology. It provides abasis for comparing the relative performance of differentassemblies under controlled conditions.5.1.3 Any variation to construction or conditions (that is,size, method of assembly, and materials) from t

    39、hat of the testedassembly is capable of substantially changing the performancecharacteristics of the assembly.5.2 Separate procedures are specified for testing columnspecimens with and without an applied superimposed load.5.2.1 The procedures for testing loaded columns stipulatethat the load shall b

    40、e applied axially. The applied load is to bethe maximum load condition allowed under nationally recog-nized structural design criteria unless limited design criteria arespecified and a corresponding reduced load applied.5.2.2 The procedure for testing unloaded steel columnspecimens includes temperat

    41、ure limits. These limits are in-tended to define the temperature above which a steel columnwith an axially applied design allowable load would failstructurally.5.2.3 The procedure for unloaded specimens also providesfor the testing of other than steel columns provided thatappropriate acceptance crit

    42、eria have been established.5.3 Separate procedures are also specified for testing beamassemblies with and without an applied superimposed load.5.3.1 The procedure for testing loaded specimens stipulatesthat the beam shall be simply supported. Application ofrestraint against longitudinal thermal expa

    43、nsion depends on theintended use, as specified by the customer. The applied load isintended to be the allowable design load permitted for the beamas determined in accordance with accepted engineering prac-tice.5.3.2 The procedure for testing unloaded beams includestemperature limits for steel. These

    44、 limits are to define thetemperature above which a simply supported, unrestrainedbeam would fail structurally if subjected to the allowabledesign load. The procedure for unloaded specimens alsoprovides for the testing of other than steel and reinforcedconcrete beams provided that appropriate accepta

    45、nce criteriahave been established.5.3.3 It is recognized that beam assemblies that are testedwithout load will not deflect to the same extent as an identicalassembly tested with load. As a result, tests conducted inaccordance with the unloaded beam procedure are not intendedto reflect the effects of

    46、 crack formation, dislodgement ofapplied fire protection materials, and other factors that areinfluenced by the deflection of the assembly.5.4 A separate procedure is specified for testing the fire-containment capability of a wall/bulkhead/partition, etc. Ac-ceptance criteria include temperature ris

    47、e of nonfire exposedsurface, plus the ability of the wall to prohibit passage offlames or hot gases, or both.5.5 In most cases, the structural assemblies that will beevaluated in accordance with these test methods will be locatedoutdoors and subjected to varying weather conditions that arecapable of

    48、 adversely affecting the fire endurance of theassembly. A program of accelerated weathering followed byfire exposure is described to simulate such exposure.5.6 These test methods provide for quantitative heat fluxmeasurements to support the development of design fires andthe use of fire safety engin

    49、eering models to predict thermalexposure and material performance in a wide range of firescenarios.CONTROL OF FIRE TEST6. Fire Test Exposure Conditions6.1 Expose the test specimen to heat flux and temperatureconditions representative of total continuous engulfment in theluminous flame regime of a large free-burning fluid-hydrocarbon-fueled pool fire. See Appendix X1, which de-scribes measurements in intermediate to large scale pool fireswith calorimeters of different sizes and shapes, for the rationaleused in the selection of the temperatures and heat fluxspeci


    注意事项

    本文(ASTM E1529-2013 Standard Test Methods for Determining Effects of Large Hydrocarbon Pool Fires on Structural Members and Assemblies《测定大型碳氢化合物储槽火灾对结构构件和组件作用的标准试验方法》.pdf)为本站会员(花仙子)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开