欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM E1297-2008(2013) Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium《用铌的放射性活化测量快中子反应速度的标准试验方法》.pdf

    • 资源ID:528349       资源大小:112.87KB        全文页数:6页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM E1297-2008(2013) Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium《用铌的放射性活化测量快中子反应速度的标准试验方法》.pdf

    1、Designation: E1297 08 (Reapproved 2013)Standard Test Method forMeasuring Fast-Neutron Reaction Rates by Radioactivationof Niobium1This standard is issued under the fixed designation E1297; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revi

    2、sion, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method describes procedures for measuringreaction rates by the activation reaction93Nb(n,n

    3、)93mNb.1.2 This activation reaction is useful for monitoring neu-trons with energies above approximately 0.5 MeV and forirradiation times up to about 30 years.1.3 With suitable techniques, fast-neutron reaction rates forneutrons with energy distribution similar to fission neutronscan be determined i

    4、n fast-neutron fluences above about 1016cm2. In the presence of high thermal-neutron fluence rates(1012cm2s1), the transmutation of93mNb due to neutroncapture should be investigated. In the presence of high-energyneutron spectra such as are associated with fusion and spalla-tion sources, the transmu

    5、tation of93mNb by reactions such as(n,2n) may occur and should be investigated.1.4 Procedures for other fast-neutron monitors are refer-enced in Practice E261.1.5 Fast-neutron fluence rates can be determined from thereaction rates provided that the appropriate cross sectioninformation is available t

    6、o meet the accuracy requirements.1.6 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user o

    7、f this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D1193 Specification for Reagent WaterE170 Terminology Relating to Radiation Measurements andDosimetryE181 Test Meth

    8、ods for Detector Calibration and Analysis ofRadionuclidesE185 Practice for Design of Surveillance Programs forLight-Water Moderated Nuclear Power Reactor VesselsE261 Practice for Determining Neutron Fluence, FluenceRate, and Spectra by Radioactivation TechniquesE262 Test Method for Determining Therm

    9、al Neutron Reac-tion Rates and Thermal Neutron Fluence Rates by Radio-activation TechniquesE844 Guide for Sensor Set Design and Irradiation forReactor Surveillance, E 706 (IIC)E944 Guide for Application of Neutron Spectrum Adjust-ment Methods in Reactor Surveillance, E 706 (IIA)E1005 Test Method for

    10、 Application and Analysis of Radio-metric Monitors for Reactor Vessel Surveillance, E 706(IIIA)E1006 Practice for Analysis and Interpretation of PhysicsDosimetry Results for Test Reactors, E 706(II)E1018 Guide for Application of ASTM Evaluated CrossSection Data File, Matrix E706 (IIB)3. Terminology3

    11、.1 DefinitionsThe definitions stated in TerminologyE170 are applicable to this test method.4. Summary of Test Method4.1 High purity niobium is irradiated in a neutron fieldproducing radioactive93mNb from the93Nb(n,n)93mNb reac-tion. The metastable state decays to the ground state by thevirtual emiss

    12、ion of 30 keV gamma rays that are all internallyconverted giving rise to the actual emission of orbital electronsfollowed by X rays.4.2 Sources of the irradiated niobium are prepared for X rayor liquid scintillation counting.4.3 The X rays emitted as a result of the decay of93mNb arecounted, and the

    13、 reaction rate, as defined in Practice E261,iscalculated from the decay rate and irradiation conditions.4.4 The neutron fluence rate may then be calculated fromthe appropriate spectral-weighted neutron activation crosssection as defined by Practice E261.1This test method is under the jurisdiction of

    14、ASTM Committee E10 on NuclearTechnology and Applicationsand is the direct responsibility of SubcommitteeE10.05 on Nuclear Radiation Metrology.Current edition approved Jan. 1, 2013. Published January 2013. Originallyapproved in 1989. Last previous edition approved in 2008 as E1297 08. DOI:10.1520/E12

    15、97-08R12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive,

    16、 PO Box C700, West Conshohocken, PA 19428-2959. United States15. Significance and Use5.1 Refer to Practice E261 for a general discussion of thedetermination of decay rates, reaction rates, and neutronfluence rates with threshold detectors (1-29).3Refer to PracticeE1006, Practice E185 and Guide E1018

    17、 for the use andapplication of results obtained by this test method.(34-36)5.2 The half-life of93mNb is 5730 6 220 days (30) and hasa K X-ray emission probability of 0.1099 6 0.0025 per decay(30). The Kand KX-rays of niobium are at 16.521316.152and 18.61818.953 keV, respectively. The recommended93Nb

    18、(n,n)93mNb cross section comes from the IRDF-90 crosssection compendium (31), was drawn from the RRDF-98 crosssection evaluations (37) and is shown in Fig. 1.5.3 Chemical dissolution of the irradiated niobium to pro-duce very low mass-per-unit area sources is an effective way toobtain consistent res

    19、ults. The direct counting of foils or wirescan produce satisfactory results provided appropriate methodsand interpretations are employed. It is possible to use liquidscintillation methods to measure the niobium activity providedthe radioactive material can be kept uniformly in solution andappropriat

    20、e corrections can be made for interfering activities.5.4 The measured reaction rates can be used to correlateneutron exposures, provide comparison with calculated reac-tion rates, and determine neutron fluences. Reaction rates canbe determined with greater accuracy than fluence rates becauseof the c

    21、urrent uncertainty in the cross section versus energyshape.5.5 The93Nb(n,n)93mNb reaction has the desirable proper-ties of monitoring neutron exposures related to neutron damageof nuclear facility structural components. It has an energyresponse range corresponding to the damage function of steeland

    22、has a half-life sufficiently long to allow its use in very longexposures (up to about 40 years). Monitoring long exposures isuseful in determining the long-term integrity of nuclear facilitycomponents.6. Interferences6.1 Pure niobium in the forms of foil and wire is availableand easily handled as a

    23、metal. When thin niobium is irradiated,it may become brittle and fragile, thus requiring carefulhandling or encapsulation to prevent damage or loss of theniobium. Refer to Guide E844 for the selection, irradiation, andquality control of neutron dosimeters.6.2 There are some distinct advantages and l

    24、imitations tothree measurement techniques identified in 5.3.Itistheresponsibility of the user to evaluate these and determine theoptimum technique for the situation.6.2.1 Low mass source X-ray spectrometry advantagesinclude sufficient energy resolution to eliminate other X-rayemissions, stable long

    25、life sources, reduced interference fluo-rescence due to other radionuclides, small and precise back-ground corrections, and minimal X-ray source self-absorptioncorrections. Limitations are low counting efficiency, complexsource preparation, and use of hazardous chemicals.6.2.2 Direct X-ray spectrome

    26、try of metal (foil or wire)sources has the advantages of simple source preparation, stablelong life sources, sufficient energy resolution to eliminate otherX-ray emissions, small and precise background corrections,and no use of hazardous chemicals. Limitations are lowcounting efficiency, large X-ray

    27、 source self-absorptioncorrections, larger corrections for interference fluorescence dueto the other radionuclides, and source geometry control.6.2.3 Liquid scintillation counting advantages include veryhigh detection efficiency, reproducible source preparation, andno source self absorption correcti

    28、ons. Limitations includespecialized calibration techniques to reduce interference from3The boldface numbers in parentheses refer to the list of references at the end ofthis test method.FIG. 1 IRDF-90 Cross Section Versus Energy for the93Nb(n,n)93mNb ReactionE1297 08 (2013)2other radionuclides, limit

    29、ed source stability, use of hazardouschemicals, and disposal of hazardous chemical waste.7. Apparatus7.1 X-ray Spectrometer, using a Si(Li) detector or a Gedetector and a multichannel pulse-height analyzer. For moreinformation, refer to Test Methods E181 and E1005.7.2 Precision Balance, able to achi

    30、eve the required accu-racy.7.3 Beakers, 50 mL polyethylene; pycnometer (weighingbottle), 50 mL polyethylene; volumetric pipets, 10 L to 5 mL.7.4 Gamma Ray Spectrometer, using a Ge detector and amultichannel pulse-height analyzer. Refer to Test MethodE181.7.5 Liquid Scintillation Counter.8. Reagents

    31、and Materials8.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents conform to the specifications of the Committee onAnalytical Reagents of the American Chemical Society, wheresuch specifications are available.4Other grade

    32、s may be used,provided it is first ascertained that the reagent is of sufficientlyhigh purity to permit its use without lessening the accuracy ofthe determination.8.2 Purity of WaterUnless otherwise indicated, any waterused shall be understood to mean reagent water as defined byType I of Specificati

    33、on D1193.8.3 Hydrofluoric AcidConcentrated (32M) hydrofluoricacid (HF).8.4 Nitric AcidConcentrated (16M) nitric acid (HNO3).8.5 Niobium MetalThe purity of the niobium is importantin that no impurities (such as tantalum) should be present toproduce long-lived radionuclides that interfere with the93mN

    34、bactivity determination. To avoid problems from tantalum, theniobium should have the lowest tantalum content possible.Niobium metal in the form of foil and wire with tantalumcontent of about 5 ppm (parts per million) or less is obtainableand can be used under most conditions. The niobium materialsho

    35、uld be tested for interfering radioactivity by neutron acti-vation techniques.8.6 Encapsulation MaterialThe encapsulation material(such as quartz, stainless steel, aluminum, etc.) should beselected to prevent corrosion of the niobium during irradiationand to be compatible with the irradiation enviro

    36、nment andpost-irradiation handling. If thermal and epithermal neutronfilters or shrouds are used, these materials (such as cadmium,tantalum, gadolinium, etc.) must also be compatible with theencapsulation and irradiation environment.8.7 Analytical PaperAnalytical grade filter paper of uni-form thick

    37、ness (about 0.076 cm) and density (about 8 mgcm2). The paper can be cut or obtained precut to the desiredsize (usually between 0.5 and 1.5 cm diameter) that iscompatible with the activity concentration of the solution andthe counting conditions. The paper should be able to absorb asmuch liquid as is

    38、 necessary and not decompose from the acid.TFE-fluorocarbon rings with an inside diameter matching theoutside diameter of the filter paper disks so they fit togetherwith light contact.8.8 Support and Cover MaterialsThin plastic film andplastic tape materials are useful to support and cover the filte

    39、rpaper sources. They should be strong enough to contain thesources and thin enough to minimize attenuation of the X rays.8.9 Source HolderA source holder must be used to accu-rately and reproducibly position the sources for the countinggeometry to be used. The source holder should be constructedof l

    40、ow density materials such as aluminum or plastic.8.10 Liquid Scintillation MaterialsVials, emulsion scintil-lant (xylene-based), chelating agent (di-2-ethylhexyl phos-phoric acid).9. Procedure9.1 Determine the size and shape of the niobium samplebeing irradiated. Consider the convenience in handling

    41、 andavailable irradiation space. Ensure that sufficient93mNb activ-ity will be produced to permit accurate radioassay. Typically,samples of 0.2 to 20 mg of niobium may be used, but apreliminary calculation of the expected production of93mNbwill aid in selecting the appropriate mass for the irradiati

    42、on.9.2 Accurately weigh the niobium sample being irradiated.9.3 Encapsulate the niobium sample so that it can beretrieved and identified following the irradiation. Record thesample identification, sample weight, and exact details of theencapsulation. Shroud the niobium with neutron filter materialif

    43、 necessary. If the thermal-to-fast neutron fluence rate ratio ishigh (greater than 5) or the tantalum impurity is high (greaterthan 10 ppm), use neutron filter materials, if possible.9.4 Irradiate the niobium samples. Keep an accurate recordof the irradiation history including neutron level versus t

    44、ime,starting and ending time of the irradiation, and the periodswhen the neutron level is zero. Record the spatial position ofthe sample in the irradiation facility.9.5 After the irradiation, retrieve and identify the irradiatedsample. Take necessary precautions to avoid personnel over-exposure to r

    45、adiation and the spread of radioactive contamina-tion.9.6 A waiting time between the end of irradiation and thestart of counting may be necessary to allow92mNb or95Nb, orboth, to decay to an insignificant level. Check the samples foractivity from contamination by other materials or reactions (seeTes

    46、t Method E262) and for any material adhering to thesample. Check the weight of the sample. If necessary, cleanand reweigh the sample.9.7 X-Ray Source Preparation and Counting:4“Reagent Chemicals,American Chemical Society Specifications,”Am. Chemi-cal Soc., Washington, DC. For suggestions on the test

    47、ing of reagents not listed bytheAmerican Chemical Society, see “Reagent Chemicals and Standards,” by JosephRosin, D. Van Nostrand Co., Inc., New York, NY, and the “United StatesPharmacopeia.”E1297 08 (2013)39.7.1 If the metal is being dissolved and reduced to a lowmass-per-unit area source, dissolve

    48、 the sample by placing it ina preweighed 50 mL polyethylene or TFE-fluorocarbon (non-wettable) beaker and adding enough concentrated hydrofluoricacid to cover the sample (usually about 1 to 10 mLof HF).Addconcentrated nitric acid dropwise to start dissolution; asdissolution slows, add additional dro

    49、ps to maintain a controlledslow rate of dissolution until the entire sample dissolves. Afterdissolution is complete, bring the final volume of solution tothe desired amount by adding distilled water. Weigh thesolution in the beaker if mass aliquoting is used.Apreweighedpolyethylene pycnometer (weighing bottle) is recommendedfor mass aliquoting. The ratio of the niobium mass to thesolution mass determines the concentration of niobium in thesolution. When transferring the solution from one container toanother, ensure that all of the solution is transferred


    注意事项

    本文(ASTM E1297-2008(2013) Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium《用铌的放射性活化测量快中子反应速度的标准试验方法》.pdf)为本站会员(confusegate185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开