欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D7590-2009 9375 Standard Guide for Measurement of Remaining Primary Antioxidant Content In In-Service Industrial Lubricating Oils by Linear Sweep Voltammetry《用线性扫描伏安法测量使用中工业润滑.pdf

    • 资源ID:525897       资源大小:844.72KB        全文页数:14页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D7590-2009 9375 Standard Guide for Measurement of Remaining Primary Antioxidant Content In In-Service Industrial Lubricating Oils by Linear Sweep Voltammetry《用线性扫描伏安法测量使用中工业润滑.pdf

    1、Designation: D7590 09Standard Guide forMeasurement of Remaining Primary Antioxidant Content InIn-Service Industrial Lubricating Oils by Linear SweepVoltammetry1This standard is issued under the fixed designation D7590; the number immediately following the designation indicates the year oforiginal ad

    2、option or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONUnder normal thermal and oxidative working conditions, which degrade t

    3、he chemical compositionof the oils basestock and gradually deplete the oils additive package, good oil condition monitoringprocedures are necessary to determine and planning corrective actions before the oil propertieschanges have passed their warning limits. Antioxidant monitoring practices are a v

    4、ital part of modernoil condition monitoring practices to achieve lubrication excellence. This guide addresses the correctguidelines for voltammetric data interpretation.1. Scope1.1 This guide covers the voltammetric analysis for quali-tative measurements of primary antioxidants in new or in-service

    5、type industrial lubricants detectable in concentrationsas low as 0.0075 mass percent up to concentrations found innew oils by measuring the amount of current flow at a specifiedvoltage in the produced voltammogram.1.2 This guide can be used as a resource for a conditionmonitoring program to track th

    6、e oxidative health of a range ofindustrial lubricants which contain primary antioxidants. Inorder to avoid excessive degradation of the base-oil, theseprimary antioxidants play a major role to protect the lubricantsagainst thermal-oxidative degradation. This guide can helpusers with interpretation a

    7、nd troubleshooting results obtainedusing linear sweep voltammetry (LSV).1.3 When used as part of oil condition monitoring practices,it is important to apply trend analysis to monitor the antioxi-dant depletion rate relative to a baseline sample rather than usevoltammetry for an absolute measurement

    8、of the antioxidantconcentration. The trending pattern provides a proactive meansto identify the level of oil degradation or abnormal changes inthe condition of the in-service lubricant.1.4 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in this

    9、standard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Ref

    10、erenced Documents2.1 ASTM Standards:2D1193 Specification for Reagent WaterD4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4378 Practice for In-Service Monitoring of Mineral Tur-bine Oils for Steam and Gas TurbinesD6224 Practice for In-Service Monitoring of LubricatingOil for Au

    11、xiliary Power Plant EquipmentD6304 Test Method for Determination of Water in Petro-leum Products, Lubricating Oils, and Additives by Coulo-metric Karl Fischer TitrationD6810 Test Method for Measurement of Hindered PhenolicAntioxidant Content in Non-Zinc Turbine Oils by LinearSweep VoltammetryD6971 T

    12、est Method for Measurement of Hindered Phenolicand Aromatic Amine Antioxidant Content in Non-zincTurbine Oils by Linear Sweep VoltammetryD7214 Test Method for Determination of the Oxidation ofUsed Lubricants by FT-IR Using Peak Area IncreaseCalculation1This guide is under the jurisdiction of ASTM Co

    13、mmittee D02 on PetroleumProducts and Lubricants and is the direct responsibility of Subcommittee D02.09.0Con Oxidation of Turbine Oils.Current edition approved Dec. 1, 2009. Published February 2010.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service

    14、at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.2.2 ISO Standards:3ISO 4406.2 Hydraulic fluid po

    15、wer - Fluids - Method forcoding the level of contamination by solid particles2.3 Other Standards:4VGB Guideline VGB-M 416 M In-Service Monitoring ofTurbine Oils3. Oil Condition Monitoring Programs3.1 Most industrial lubricants consist of mineral or syntheticoils compounded with oxidation and rust in

    16、hibitors. Dependingupon their application and the performance level desired,specific required amounts of other additives such as metaldeactivators, pour depressants, extreme pressure additives, andfoam suppressants can also be present.3.2 With modern formulations of industrial lubricants, theantioxi

    17、dants play a major role in protecting the base-oil againstexcessive degradation. To prevent this base-oil degradation,resulting in the eventual build-up of deposits, varnish andsludge, the monitoring of the antioxidants represents a proac-tive information on the remaining oxidative health of thein-s

    18、ervice lubricant. Oxidation is a chemical reaction betweenoxygen atoms with the base oil hydrocarbon molecules, whichare converting the hydrocarbon molecules into oxidation prod-ucts and subsequently weak organic acids. The rate of oxida-tion depends on the presence of antioxidant additives, whichco

    19、ntrols the speed of oxidation, but eventually the antioxidantsare consumed. Consequently as part of modern proactivemaintenance strategies, it is vital to know at any time duringthe operating cycle of the lubricants, its condition by assessingthe remaining activity of antioxidants, to prevent the ox

    20、idativedegradation of the base oil.3.3 Antioxidant monitoring guidelines have been part ofInternational Standards such as Practice D4378, PracticeD6224, and VGB Guideline VGB-M 416 M, as well Interna-tional OEM Maintenance Specifications. This guide presentsguidelines for the lubricant professionals

    21、 using voltammetrictechniques as part of their regular maintenance strategies, suchas data interpretation, oil analysis frequency, combination withother condition monitoring tests, etc.4. Summary of Linear Sweep Voltammetric (LSV) TestMethod4.1 Linear Sweep Voltammetric (LSV) test can be per-formed

    22、on any type of industrial lubricant containing at leastone type of antioxidant. The voltammetric test is a comparativetest method. By establishing a comparison between its refer-ence oil (fresh oil or standard) and its used oil, this guide canbe used without the specific knowledge on the category to

    23、which the antioxidants belong.4.2 ASTM International has two standards, Test MethodD6810 and D6971, that shall enable the measurement of theremaining phenolic and aminic type of antioxidants. Nostandard test method has been developed for the detection ofother type of antioxidants by linear voltammet

    24、ry, althoughLSV also has detection capabilities for these types of second-ary antioxidants (such as zinc dialkyl dithiophosphates).54.3 A measured quantity of sample is dispensed into a vialcontaining a measured quantity of a selected test solution andcontaining a layer of sand. When the vial is sha

    25、ken, theantioxidants and other solution soluble oil components presentin the sample are extracted into the electrolytic test solutionand the remaining droplets suspended in the test solution areagglomerated by the sand. The sand/droplet suspension isallowed to settle out and the antioxidants dissolv

    26、ed in the testsolution are quantified by voltammetric analysis. The resultsare calculated and reported as mass percent of antioxidant or asmillimoles (mmol) of antioxidant per litre of sample forprepared and fresh oils and as a percent remaining antioxidantfor in-service oils.4.4 Voltammetric analys

    27、is is a technique that applies elec-troanalytic methods wherein a sample to be analyzed is mixedwith an electrolyte and a solvent (acetone or ethanol based),and placed within an electrolytic cell. Data is obtained bymeasuring the current passing through the cell as a function ofthe potential applied

    28、, and test results are based upon current,voltage and time relationships at the cell electrodes. The cellconsists of a fluid container into which is mounted a small,easily polarized working electrode, and a large non-polarizablereference electrode. The reference electrode should be massiverelative t

    29、o the working electrode so that its behavior remainsessentially constant with the passage of small current; that is, itremains unpolarized during the analysis period. Additionalelectrodes, auxiliary electrodes, can be added to the electrodesystem to eliminate the effects of resistive drop for highre

    30、sistance solutions. In performing a voltammetric analysis, thepotential across the electrodes is varied linearly with time, andthe resulting current is recorded as a function of the potential.As the increasing voltage is applied to the prepared samplewithin the cell, the various additive species und

    31、er investigationwithin the oil are caused to electrochemically oxidize. The datarecorded during this oxidation reaction can then be used todetermine the remaining useful life of the oil type. A typicalcurrent-potential curve produced during the practice of thevoltammetric test can be seen by referen

    32、ce to Fig. 1. Initiallythe applied potential produces an electrochemical reactionhaving a rate so slow that virtually no current flows through thecell. As the voltage is increased, as shown in Fig. 1, theelectroactive species (for example, substituted phenols) beginto oxidize at the working electrod

    33、e surface, producing ananodic rise in the current. As the potential is further increased,the decrease in the electroactive species concentration at theelectrode surface and the exponential increase of the oxidationrate lead to a maximum in the current-potential curve shown inFig. 1.5. Significance a

    34、nd Use5.1 The quantitative determination of remaining antioxi-dants for in-service industrial oils by measuring the amount of3Available from International Organization for Standardization (ISO), 1, ch. dela Voie-Creuse, Case postale 56, CH-1211, Geneva 20, Switzerland, http:/www.iso.org.4Available f

    35、rom VGB PowerTech e.V., P. O. Box 10 39 32, D-45039 Essen,Klinkestrae 27 - 31, D-45136 Essen, http:/www.vgb.org.5“Remaining Useful Life Measurements of Diesel Engine Oils, AutomotiveEngine Oils, Hydraulic Fluids, and Greases Using Cyclic Voltammetric Methods,”STLE, Lubrication Engineering, Vol 51, 3

    36、, pp. 223 229.D7590 092these additives that have been added to the oil as protectionagainst oxidation. Industrial lubricants, such as turbine oils,compressor oils, gear oils, hydraulic oils, bearing lubricantsand greases can be formulated with a wide variety of antioxi-dants types such as phenols an

    37、d amines (as primary antioxi-dants), which are working synergistically and therefore allimportant to be monitored individually. For in-service oils, theLSV determines and compares the amount of original primaryantioxidants remaining after oxidation have reduced its initialconcentration.5.2 This guid

    38、e covers procedures for primary antioxidantssuch as amines and phenols, as described by Test MethodD6971 and D6810.5.3 LSV is not designed or intended to detect all of theantioxidant intermediates formed during the thermal and oxi-dative stressing of the oils, which are recognized as havingsome cont

    39、ribution to the remaining useful life of the used orin-service oil. In order to measure the overall stability of an oil(including contribution of intermediates present), and beforemaking final judgment on the remaining useful life of the usedoil (which might result in the replacement of the oil rese

    40、rvoir),it is advised to perform additional analytical techniques (inaccordance with Practice D4378 and Practice D6224).5.4 This guide is applicable to a wide range of industrialoils, both mineral or synthetic based, which can contain rustand oxidation inhibitors, antiwear additives such as zincdialk

    41、yl dithiophosphates on gear oils, circulating oils, trans-mission oils and other industrial lubricating oils.5.5 The test is also suitable for manufacturing control andspecification acceptance.5.6 When a voltammetric analysis is obtained for a indus-trial lubricant inhibited with at least one type o

    42、f antioxidant,there is an increase in the current of the produced voltammo-gram between 5 to 8 s (or 0.5 to 0.8 V applied voltage) (seeNote 1) for the zinc dialkyl dithiophosphate type of antioxidant(Fig. 1), an increase in the current of the produced voltammo-gram between 8 to 12 s (or 0.8 to 1.2 V

    43、 applied voltage) (Fig.2) (see Note 1) for the aromatic amines, and increase in thecurrent of the produced voltammogram between 13 and 16 s(or 1.3 to 1.6 V applied voltage) (see Note 1) for the hinderedphenols or carbamates in the neutral acetone solution (Fig. 2 :x-axis1s=0.1V),orboth. Hindered phe

    44、nol antioxidantsdetected by voltammetric analysis include, but are not limitedto, 2,6-di-tert-butyl-4-methylphenol; 2,6-di-tert-butylphenoland 4,4-Methylenebis(2,6-di-tert-butylphenol). Aromaticamine antioxidants detected by voltammetric analysis include,but are not limited to, phenyl alpha naphthyl

    45、amines, andalkylated diphenylamines.NOTE 1Voltages listed with respect to reference electrode. Thevoltammograms shown in Figs. 1-6 were obtained with a platinumreference electrode and a voltage scan rate of 0.1 V/s.5.7 For industrial lubricants containing zinc dialkyl dithio-phosphate type of antiox

    46、idants, there is an increase in thecurrent of the produced voltammogram between 5 to 8 s (or 0.5to 0.8 V applied voltage) (see Note 1) by using the neutralacetone test solution ( see Fig. 1). There is no correspondingASTM International standard describing the test method pro-cedures for measuring zi

    47、nc dialkyl dithiophosphates type ofantioxidants in industrial lubricants.5.8 For industrial lubricants containing only aromaticamines as antioxidants, there is an increase in the current of theproduced voltammogram between 8 to 12 s (or 0.8 to 1.2 Vapplied voltage) (see Note 1) for the aromatic amin

    48、es, by usingthe neutral acetone test solution (first peak in Fig. 2)asdescribed in Test Method D6971.FIG. 1 Zinc Dialkyl Dithiophosphate (ZDDP) Voltammetric Response in the Neutral Test Solution with Blank Response ZeroedD7590 0935.9 For industrial lubricants containing only hindered phe-nolic antio

    49、xidants, it is preferable to use a basic alcoholsolution rather than the neutral acetone solutions, to achieve anincrease in the current of the produced voltammogram between3 to 6 s (or 0.3 to 0.6 V applied voltage) (see Note 1) in basicalcohol solution (Fig. 3 : x-axis1s=0.1V)asdescribed in TestMethod D6810.FIG. 2 Aromatic Amine and Hindered Phenol Voltammetric Response in the Neutral Test Solution with Blank Response ZeroedFIG. 3 Hindered Phenol Voltammetric Response in Basic Test Solution with Blank Response ZeroedD7590 0946. Voltammetric Test Apparatus6.1 Voltammetri


    注意事项

    本文(ASTM D7590-2009 9375 Standard Guide for Measurement of Remaining Primary Antioxidant Content In In-Service Industrial Lubricating Oils by Linear Sweep Voltammetry《用线性扫描伏安法测量使用中工业润滑.pdf)为本站会员(lawfemale396)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开