欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D7452-2009 8125 Standard Test Method for Evaluation of the Load Carrying Properties of Lubricants Used for Final Drive Axles Under Conditions of High Speed and Shock Loading《高.pdf

    • 资源ID:525519       资源大小:1.84MB        全文页数:27页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D7452-2009 8125 Standard Test Method for Evaluation of the Load Carrying Properties of Lubricants Used for Final Drive Axles Under Conditions of High Speed and Shock Loading《高.pdf

    1、Designation: D7452 09Standard Test Method forEvaluation of the Load Carrying Properties of LubricantsUsed for Final Drive Axles, Under Conditions of High Speedand Shock Loading1This standard is issued under the fixed designation D7452; the number immediately following the designation indicates the y

    2、ear oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the anti

    3、-scoring properties of final drive axle lubricating oils whensubjected to high-speed and shock conditions. This test methodis commonly referred to as the L-42 test.21.2 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to

    4、 SI units that are provided for information onlyand are not considered standard.1.2.1 ExceptionsSI units are provided for all parametersexcept where there is no direct equivalent such as the units forscrew threads, National Pipe Threads/diameters, tubing size,and single source equipment suppliers.1.

    5、3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific warning

    6、information is given in Sections 4 and 7.2. Referenced Documents2.1 ASTM Standards:3D235 Specification for Mineral Spirits (Petroleum Spirits)(Hydrocarbon Dry Cleaning Solvent)E29 Practice for Using Significant Digits in Test Data toDetermine Conformance with Specifications2.2 Society of Automotive

    7、Engineers Standards:4SAE J308 Information Report on Axle and Manual Trans-mission LubricantsSAE J2360 Lubricating Oil, Gear Multipurpose (Metric)Military Use3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 coast side, nthe convex side of the pinion and theconcave side of the ri

    8、ng gear which are in contact duringdeceleration in a forward gear. CRC Manual 2153.1.2 drive side, nthe concave side of the pinion and theconvex side of the ring gear which are in contact duringacceleration in a forward gear. CRC Manual 2153.1.3 scoring, non the ring and the pinion gear teeth, thedi

    9、splacement of metal by local momentary welding from thegear tooth, resulting in the development of a matt, or frosteddull surface. CRC Manual 2154. Summary of Test Method4.1 Charge a specially prepared light duty hypoid rear axle(Dana Model 44 ASTM Part No. 044AA100-1)6with thelubricant sample to be

    10、 tested (see 10.1). Mount the axlebetween two load absorbing dynamometers which are drivenwith a V-8 gasoline engine through a manual transmission.4.2 Condition the test axle with light loads at differentspeed, torque and temperature conditions on both the drive andcoast sides of the gears. (Warning

    11、High-speed rotatingequipment, electrical shock, high-temperature surfaces.) Afterconditioning, subject the test axle to high speed and shockloadings at higher temperatures.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsi

    12、bility of SubcommitteeD02.B0.03 on Automotive Gear Lubricants percent output adjustable.6.6.4 Axle CoolingUse three spray nozzles to distributewater over the cover plate and axle housing as shown in Fig.A2.2. Actuate the water control valve by the temperature PIDcontrol system.6.6.4.1 Depending on h

    13、ow the system is plumbed, use spraynozzles in any combination of the following part numbers:Straight Male NPT (Part No. 3/8GG-SS22), 90 Male NPT(Part No. 3/8GGA-SS22), Straight Female NPT (Part No.3/8G-SS22), and 90 Female NPT (Part No. 3/8GA-SS22).8,96.6.4.2 Use a single control valve to control th

    14、e coolingwater supply. The control shall be a12 in. (12.7 mm) two-way,C linear trim, air to close, Research Control valve. Use a singlePID loop to maintain the axle lubricant temperature control forboth the Standard and Canadian version test. A separate PIDloop control for each version is not permit

    15、ted. See Annex A1.6.6.4.3 Use only38 or12 in. (9.5 mm or 12.7 mm) linematerial to the spray nozzles.6.6.4.4 Use a minimum supply water pressure of 25 psig(172 kPa) to the control valve.6.6.4.5 Use an axle containment box as shown in Fig.A2.10. The purpose is to contain water.6.6.4.6 Use a locating p

    16、in or stop block as an indexingdevice to ensure that all subsequent axle installations areconsistently installed perpendicular with the axle housingcover to engine and transmission drive-shaft centerline.6.7 Torque MeterInclude in the test equipment a torquemeter installed in the drive shaft (see Fi

    17、gs. A2.3-A2.5)tomeasure the torque applied to the pinion. Install a Himmelsteininline torque meter Model numbers MCRT28061T(1-4) orMCRT2661TN(1-4)9,10without a foot mount and a range of10 000 lb-in. (1130 Nm) shall be installed to measure piniontorque. Additional suffix letters only indicate allowab

    18、le op-tions.6.8 Signal ConditioningUse a Himmelstein Models 701or 711 strain gage conditioner for signal conditioning. Set thelow pass cut-off frequency at 10 Hz.6.9 Digital Data Acquisition SystemSystem requires ca-pability of measuring a minimum of five channels at samplingfrequencies outlined in

    19、Section 10.6.9.1 Do not use hardware or software filtering for thepinion torque channel during data acquisition periods of thetest.6.10 DynamometersTwo axle dynamometers (MidwestDynamatic, Model 3232)9,11with suitable control equipmentcapable of maintaining specified test conditions.6.11 Engine Spee

    20、d ControlSystem requires a device tomaintain steady state conditions and also provide adjustablethrottle acceleration and deceleration rates to attain specifiedshock loading torques.6.11.1 Throttle Controller SystemUse a Foxboro/JordanController, Model AD7530.9,12Use a power transformer fromAcme Ele

    21、ctric Corp. PN T-1-81058 or equivalent, primary7API Publication 1560, Lubricant Service Designations for Automotive ManualTransmissions, Manual Transaxles, and Axles, American Petroleum Institute,Washington, DC.8The sole source supply of the apparatus known to the committee at this time isSpray Syst

    22、ems Company, and can be purchased through E. I. Pfaff Company, 3443Edwards Road, Suite D, Cincinnati, OH 45208.9If you are aware of alternative suppliers, please provide this information toASTM International Headquarters. Your comments will receive careful consider-ation at a meeting of the responsi

    23、ble technical committee,1which you may attend.10The sole source supply of the apparatus known to the committee at this timeis S. Himmelstein and Company, 2490 Pembroke Avenue, Hoffman Estates, IL60195.11Available from Dyne Systems, P.O. Box 18 W209 N17391 Industrial Drive,Jackson, WI 53037.12Availab

    24、le from Fox/Jordan, Inc., 5607 West Douglas Avenue, Milwaukee, WI53218.D7452 092volts 120X240, secondary volts (120 V primary by 240 Vsecondary), 16/32 (13 mm) center tap, 0.500 kVA (0.5 kW) inconjunction with the Foxboro/Jordan Controller.6.12 Connecting ShaftsUse connecting shafts of equallength 6

    25、 1 in. (25.4 mm) and less than 30 in. (762 mm) longfrom flange face to flange face. Use a tubing diameter of 3.5 60.2 in. (88.9 mm 6 5.1 mm) OD, with a wall thickness of 0.0956 0.005 in. (2.41 mm 6 0.13 mm) if tubing is required tofabricate the shafts. Ensure the shafts are dynamically (spin)balance

    26、d and strong enough to handle torques up to 2100 lbf-ft(2847 Nm). Use an operating angle of (0 6 0.5).6.13 Power TrainThe power train consists of a gasolinepowered V-8 GM performance Ramjet 5.7 L marine enginecoupled with a five speed manual transmission capable ofsupplying specified shock loading t

    27、orques. The engine andtransmission operating angle shall be (0 6 0.5).6.13.1 All recommended replacement parts are availablethrough local General Motors dealers. A list of these replace-ment parts are shown in Table 1. Do not make modifications tothe engine that would affect the engines factory disp

    28、lacementor compression ratio.6.14 Drive ShaftWelded steel tubing, 3.5 6 0.2 in. (90mm 6 5.1 mm) outside diameter, 0.095 6 0.005 in. (2.41 mm6 0.13 mm) wall thickness, 34.5 6 1 in. (880 mm 6 25 mm)long from center weld to center weld. (See Figs. A2.3-A2.5.)Dynamically (spin) balance the drive shaft a

    29、nd torque meter.The operating angle shall be (0 6 0.5).6.14.1 Transmission U-Joint(Spicer 5-178X).136.14.2 Pinion U-Joint(Spicer 5-153X).6.14.3 Flange YokeConnects transmission yoke throughu-joint to drive shaft.6.14.4 Pinion Drive Shaft Slip YokeConnects the driveshaft through the u-joint to the ax

    30、le yoke.6.14.5 Flange AdaptorManufacture flange adapter tospecifications in Figs. A2.4 and A2.5.6.15 Spring PlateManufacture spring plates to specifica-tion as shown in Fig. A2.8.6.16 Spring Plate Rod ConnectionMount a rod connect-ing the spring plate to the gear stand using12 in. (13 mm)spherical r

    31、od ends. See Figs. A2.6 and A2.7.7. Reagents and Materials7.1 Sealing CompoundWhere necessary, use PermatexNo. 2 or equivalent.7.2 Cleaning SolventUse solvent meeting ASTM D235Type II, Class C requirements forAromatic Content (0 to 2) vol%, Flash Point (142F/61 C, min) and Color (not darker than+25

    32、on Saybolt Scale or 25 on Pt-Co Scale). (WarningHealth hazard, combustible.) Obtain a Certificate of Analysisfor each batch of solvent from the supplier.7.3 Contact Pattern Marking CompoundWayne MetalWorking Compound # M 99B 111A14or equivalent.7.4 Test OilUse 3.5 pt (1655 mL) of test lubricant.8. P

    33、reparation of Apparatus8.1 Cleaning of Reusable HardwareClean as necessarywith cleaning solvent (see 7.2) all reusable parts including:axle shafts, thermocouples, axle housing cover, and all associ-ated drain pans and funnels used for the addition of andcollection of test oil.8.2 Preparation of Axle

    34、:8.2.1 Pretest contact pattern procedure (see Annex A6).8.2.2 Record break and turn.8.2.3 Record the backlash reported from the manufacturer.The readings shall be between 0.004 and 0.012 in. (0.102 to0.305 mm).8.2.3.1 Measure and record backlash at four equally spacedlocations. Report the average an

    35、d the four readings.8.2.4 Proceed to 8.2.9 if contact pattern and backlash areacceptable. Proceed to 8.2.5 if the contact pattern or backlashneeds adjustment.8.2.5 Follow Dana Model 44 Maintenance Manual6ifcontact pattern or backlash needs to be adjusted.8.2.6 Assemble the gear unit using Dana Model

    36、 44 Main-tenance Manual.6Apply gear contact pattern grease on thedrive and coast side of the ring. Place a 30 6 5 lbf-ft (40.7 66.8 Nm) turning torque on the ring and pinion. Rotate ring andpinion through the gear contact pattern grease on the drive andcoast side.8.2.7 Proceed to 8.2.8 if the contac

    37、t pattern and backlash areacceptable. If the contact pattern requires further adjustment,repeat 8.2.5 and 8.2.6 until an acceptable pattern is obtained.8.2.8 Measure and record backlash at four equally spacedlocations. Report the average and the four readings.8.2.9 Clean the gear with cleaning solve

    38、nt (see 7.2) whengear contact pattern and backlash are at acceptable levels.8.2.10 CleaningWash the test unit in cleaning solvent (see7.2), paying particular attention to the pinion bearing to removeall preservative oil. Blow dry with clean dry compressed air.8.2.11 Lubricate the carrier bearing, pi

    39、nion bearings, differ-ential gears, and the ring and pinion gears using the testlubricant.13Available from any local drive shaft supplier.14The gear marking compound is made by Wayne Metal Working Company.TABLE 1 Recommended Power Train Replacement Parts ListParts Part NumberRamjet Engine Includes E

    40、CM 12495515Five Speed Transmission 15747134Bell Housing 15998496Clutch Assembly 15002591Throw Out Bearing 15705563Dip Stick 10190942Dip Stick Tube 12552920Flywheel 10105832Flywheel Bolt (6 req.) 12337973Pilot Bearing 14061685Master Cylinder 15727261Actuating Cylinder 15046288Pulley, Water Pump 14023

    41、155Pulley, Crankshaft 14023147Belt 9433720Starter 10496873Engine Control Unit 12489488Throttle Body from 2000 Corvette. 17113669Throttle Body TPS Connector P/N 12116247Throttle Body Actuator Motor Connector P/N 12167121K where: (1) yyyyym-mdd is the date the calibration sequence is started, and (2)

    42、xisa number that starts with one and is incremented each time achange is made that requires that calibration sequence to bestarted over.13.5.1 Changing the torque settings is an example of achange that would require the calibration sequence to startover.14. Precision and Bias14.1 Precision:14.1.1 Te

    43、st precision is established on the basis of opera-tionally valid reference oil test results monitored by the TMC.14.1.2 Intermediate Precision ConditionsConditionswhere test results are obtained with the same test method usingthe same oil, with changing conditions such as operators,measuring equipme

    44、nt, test stands, test engines and time.NOTE 2Intermediate precision is the appropriate term for this testmethod rather than repeatability, which defines more rigorous within-laboratory conditions.14.1.2.1 Intermediate Precision Limit (i.p.)The differencebetween two results obtained under intermediat

    45、e precisionconditions that would, in the long run, in the normal andcorrect conduct of the test method, exceed the values shown inTable 2 in only one case in twenty. When only a single testresult is available, the Intermediate Precision Limit can be usedto calculate a range (test result 6 Intermedia

    46、te Precision Limit)outside of which a second test result would be expected to fallabout one time in twenty.14.1.3 Reproducibility ConditionsConditions where testresults are obtained with the same test method using the sametest oil in different laboratories with different operators usingdifferent equ

    47、ipment.14.1.3.1 Reproducibility Limit (R)The difference betweentwo results obtained under reproducibility conditions thatwould, in the long run, in the normal and correct conduct of thetest method, exceed the values shown in Table 2 in only onecase in twenty. When only a single test result is availa

    48、ble, theReproducibility Limit can be used to calculate a range (testresult 6 Reproducibility Limit) outside of which a second testresult would be expected to fall about one time in twenty.14.2 BiasNo estimate of bias is possible, as the behaviorof a lubricant is determined only under the specific co

    49、nditionsof the test and no absolute standards exist.15. Keywords15.1 automotive gear oils; extreme pressure lubricants; finaldrive axle; hypoid gear lubricants; L-42TABLE 2 Reference Oil StatisticsAVariable, MeritsIntermediate Precision Reproducibilitysi.p.Bi.p.CsRBRCScoring 5.49 15.37 5.49 15.37AThese statistics are based on results obtained on TMC Reference Oil 116 asof May 7, 2007.Bs = standard deviations.CThis value is obtained by multiplying the standard deviation by 2.8.D7452 098ANNEXES(Mandatory Information)A1. L-42 TEST VERSIONSA1


    注意事项

    本文(ASTM D7452-2009 8125 Standard Test Method for Evaluation of the Load Carrying Properties of Lubricants Used for Final Drive Axles Under Conditions of High Speed and Shock Loading《高.pdf)为本站会员(amazingpat195)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开