欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D7366-2008(2013) 5000 Standard Practice for Estimation of Measurement Uncertainty for Data from Regression-based Methods《基于回归方法从预测不确定度获得数据的标准指南》.pdf

    • 资源ID:525286       资源大小:135.32KB        全文页数:7页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D7366-2008(2013) 5000 Standard Practice for Estimation of Measurement Uncertainty for Data from Regression-based Methods《基于回归方法从预测不确定度获得数据的标准指南》.pdf

    1、Designation: D7366 08 (Reapproved 2013)Standard Practice forEstimation of Measurement Uncertainty for Data fromRegression-based Methods1This standard is issued under the fixed designation D7366; the number immediately following the designation indicates the year oforiginal adoption or, in the case o

    2、f revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice establishes a standard for computing themeasurement uncertainty for applicable t

    3、est methods in Com-mittee D19 on Water. The practice does not provide a single-point estimate for the entire working range, but rather relatesthe uncertainty to concentration. The statistical technique ofregression is employed during data analysis.1.2 Applicable test methods are those whose results

    4、comefrom regression-based methods and whose data are intra-laboratory (not inter-laboratory data, such as result fromround-robin studies). For each analysis conducted using such amethod, it is assumed that a fixed, reproducible amount ofsample is introduced.1.3 Calculation of the measurement uncerta

    5、inty involves theanalysis of data collected to help characterize the analyticalmethod over an appropriate concentration range. Examplesources of data include: 1) calibration studies (which may ormay not be conducted in pure solvent), 2) recovery studies(which typically are conducted in matrix and in

    6、clude allsample-preparation steps), and 3) collections of data obtainedas part of the methods ongoing Quality Control program. Useof multiple instruments, multiple operators, or both, andfield-sampling protocols may or may not be reflected in thedata.1.4 In any designed study whose data are to be us

    7、ed tocalculate method uncertainty, the user should think carefullyabout what the study is trying to accomplish and muchvariation should be incorporated into the study. General guid-ance on designing studies (for example, calibration, recovery)is given in Appendix A. Detailed guidelines on sources of

    8、variation are outside the scope of this practice, but generalpoints to consider are included in Appendix B, which is notintended to be exhaustive. With any study, the user must thinkcarefully about the factors involved with conducting theanalysis, and must realize that the computed measurementuncert

    9、ainty will reflect the quality of the input data.1.5 Associated with the measurement uncertainty is a user-chosen level of statistical confidence.1.6 At any concentration in the working range, the measure-ment uncertainty is plus-or-minus the half-width of the predic-tion interval associated with th

    10、e regression line.1.7 It is assumed that the user has access to a statisticalsoftware package for performing regression. A statisticianshould be consulted if assistance is needed in selecting such aprogram.1.8 A statistician also should be consulted if data transfor-mations are being considered.1.9

    11、This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Docum

    12、ents2.1 ASTM Standards:2D1129 Terminology Relating to Water3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 confidence levelthe probability that the predictioninterval from a regression estimate will encompass the truevalue of the amount or concentration of the analyte in asubs

    13、equent measurement. Typical choices for the confidencelevel are 99 % and 95 %.3.1.2 fitting techniquea method for estimating the param-eters of a mathematical model. For example, ordinary leastsquares is a fitting technique that may be used to estimate theparameters a0,a1,a2,of the polynomial modely

    14、=a0+a1x+a2x2+ , based on observed x,y pairs. Weighted leastsquares is also a fitting technique.3.1.3 lack-of-fit (LOF) testa statistical technique whenreplicate data are available; computes the significance of1This practice is under the jurisdiction of ASTM Committee D19 on Water andis the direct re

    15、sponsibility of Subcommittee D19.02 on Quality Systems,Specification, and Statistics.Current edition approved Jan. 1, 2013. Published January 2013. DOI: 10.1520/D7366-08R13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For A

    16、nnual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1residual means to replicate y variability, to indicate whetherdeviations f

    17、rom model predictions are reasonably accountedfor by random variability, thus indicating that the model isadequate; at each concentration, compares the amount ofresidual variation from model prediction with the amount ofresidual variation from the observed mean.3.1.4 least squaresfitting technique t

    18、hat minimizes thesum of squared residuals between observed y values and thosepredicted by the model.3.1.5 modelmathematical expression (for example,straight line, quadratic) relating y (directly measured value) tox (concentration or amount of analyte).3.1.6 ordinary least squares (OLS)least squares,

    19、 where alldata points are given equal weight.3.1.7 prediction intervala pair of prediction limits (an“upper” and “lower”) used to bracket the “next” observation ata certain level of confidence.3.1.8 p-valuethe statistical significance of a test; theprobability value associated with a statistical tes

    20、t, representingthe likelihood that a test statistic would assume or exceed acertain value purely by chance, assuming the null hypothesis istrue (a low p-value indicates statistical significance at a level ofconfidence equal to 1.0 minus the p-value).3.1.9 regressionan analysis technique for fitting

    21、a modelto data; often used as a synonym for OLS.3.1.10 residualerror in the fit between observed andmodeled concentration; response minus fit.3.1.11 root mean square error (RMSE)an estimate of themeasurement standard deviation (that is, inherent variation inthe measurement system).3.1.12 significanc

    22、e levelthe likelihood that a measured orobserved result came about due to simple random behavior.3.1.13 uncertainty (of a measurement)the lack of exact-ness in measurement (for example, due to sampling error,measurement variation, and model inexactness); a statisticalinterval within which the measur

    23、ement error is believed tooccur, at some level of confidence.3.1.14 weightcoefficient assigned to observations in orderto manipulate their relative influence in subsequent calcula-tions. For example, in weighted least squares, noisy observa-tions are weighted downwards, while precise data are weight

    24、edupwards.3.1.15 weighted least squares (WLS)least squares, wheredata points are weighted inversely proportional to their vari-ance (“noisiness”).4. Summary of Practice4.1 Key points of the statistical protocol for measurementuncertainty are:4.1.1 Within the working range of the methods data set, th

    25、eestimate of the method uncertainty at any given concentrationis calculated to be plus-or-minus the half-width of the predic-tion interval.4.1.2 The total number of data points in any designed studyshould be kept high. Blanks may or may not be included,depending on the data-quality objectives of the

    26、 test method.4.1.3 In applying regression to any applicable data set, theproper fitting technique (for example, ordinary least squares(OLS) or weighted least squares (WLS) must be determined(for fitting the proposed model to the data).4.1.4 The residual pattern and the lack-of-fit test are used toev

    27、aluate the adequacy of the chosen model.4.1.5 The magnitude of the half-width of the predictioninterval must be evaluated, remembering that accepting orrejecting the amount of uncertainty is a judgment call, not astatistical decision.5. Significance and Use5.1 Appropriate application of this practic

    28、e should result inan estimate of the test-methods uncertainty (at any concentra-tion within the working range), which can be compared withdata-quality objectives to see if the uncertainty is acceptable.5.2 With data sets that compare recovered concentrationwith true concentration, the resulting regr

    29、ession plot allows thecorrection of the recovery data to true values. Reporting ofsuch corrections is at the discretion of the user.5.3 This practice should be used to estimate the measure-ment uncertainty for any application of a test method wheremeasurement uncertainty is important to data use.6.

    30、Procedure6.1 Introduction6.1.1 For purposes of this practice, only regression-basedmethods are applicable. An example of a module that is notregression-based is a balance. If an object is placed on abalance, the readout is in the desired units; that is, in units ofmass. No user intervention is requi

    31、red to get to the neededresult. However, for an instrument such as a chromatograph ora spectrometer, the raw data (for example, peak area orabsorbance) must be transformed into meaningful units, typi-cally concentration. Regression is at the core of this transfor-mation process.6.1.2 One additional

    32、distinction will be made regarding theapplicability of this protocol. This practice will deal only withintralaboratory data. In other words, the variability introducedby collecting results from more than one lab is not beingconsidered. The examples that are shown here are for onemethod with one oper

    33、ator. If the user wishes, additionaloperators may be included in the design, to capture multiple-operator variability.6.1.3 A brief example will help illustrate the importance ofestimating measurement uncertainty. A sample is to be ana-lyzed to determine if it is under the upper specification limit

    34、of5 (the actual units of concentration do not matter).The final testresult is 4.5. The question then is whether the sample shouldpass or fail. Clearly, 4.5 is less than 5. If the numbers aretreated as being absolute, then the sample will pass. However,such a judgment call ignores the variability tha

    35、t always existswith a measurement. The width of any measurements uncer-tainty interval depends not only on the noisiness of the data,but also on the confidence level the user wishes to assume.ThisD7366 08 (2013)2latter consideration is not a statistical decision, but a reasoneddecision that must be

    36、based on the needs of the customer, theintended use of the data, or both. Once the confidence level hasbeen chosen, the interval can be calculated from the data. Inthis example, if the uncertainty is determined to be 61.0, thenthere is serious doubt as to whether the sample passes or not,since the t

    37、rue value could be anywhere between 3.5 and 5.5.On the other hand, if the uncertainty is only 60.1, then thesample could be passed with a high level of comfort. Only bymaking a sound evaluation of the uncertainty can the userdetermine how to apply the sample estimate he or she hasobtained. The follo

    38、wing protocol is designed to answer ques-tions such as: 4.5 6 ?6.2 Regression Diagnostics for Recovery Data6.2.1 Analysts who routinely use chromatographs and spec-trometers are familiar with the basics of the regression process.The final results are: 1) a plot that visually relates the responses(on

    39、 the y-axis) to the true concentrations (on the x-axis) and 2)an equation that mathematically relates the two variables.6.2.2 Underlying these results are two basic choices: 1) amodel, such as a straight line or some sort of curved line, and2) a fitting technique, which is a version of least squares

    40、. Themodeling choices are generally well known to most analysts,but the fitting-technique choices are typically less well under-stood. The two most common forms of least-squares fitting arediscussed next.6.2.2.1 Ordinary least squares (OLS) assumes that thevariance of the responses does not trend wi

    41、th concentration. Ifthe variance does trend with concentration, then weighted leastsquares (WLS) is needed. InWLS, data are weighted accordingto how noisy they are. Values that have relatively low uncer-tainty are considered to be more reliable and are subsequentlyafforded higher weights (and theref

    42、ore more influence on theregression line) than are the more uncertain values.6.2.2.2 Several formulas have been used for calculating theweights. The simplest is 1/x (where x = true concentration),followed by 1/x2. At each true concentration, the reciprocalsquare of the actual standard deviation has

    43、also been used.However, the preferred formula comes from modeling thestandard deviation. In other words, the actual standard-deviation values are plotted versus true concentration; anappropriate model is then fitted to the data. The reciprocalsquare of the equation for the line is then used to calcu

    44、late theweights. The simplest model is a straight line, but more precisemodeling should be done if the situation requires it. (Inpractice, it is best to normalize the weight formula by dividingby the sum of all the reciprocal squares. This process assuresthat the root mean square error is correct.)6

    45、.2.2.3 In sum, two choices, which are independent of eachother, must be made in performing regression. These twochoices are a model and a fitting technique. In practice, theoptions for the model are typically a straight line or a quadratic,while the customary choices for the fitting technique areord

    46、inary least squares and weighted least squares.6.2.2.4 However, a straight line is not automatically associ-ated with OLS, nor is a quadratic automatically paired withWLS. The fitting technique depends solely on the behavior ofthe response standard deviations (that is, do they trend withconcentratio

    47、ns). The model choice is not related to thesestandard deviations, but depends primarily on whether the datapoints exhibit some type of curvature.6.2.3 Once an appropriate model and fitting technique havebeen chosen, the regression line and plot can be determined.One other very important feature can

    48、also be calculated andgraphed. That feature is the prediction interval, which is an“envelope” around the line itself and which reports theuncertainty (at the chosen confidence level) in a future mea-surement predicted from the line. An example is given in Fig.1. The solid red line is the regression

    49、line; the dashed red linesform the prediction interval.6.2.4 While the concept of a model is familiar to mostanalysts, the statistically sound process for selecting an ad-equate model typically is not.Aseries of regression diagnosticswill guide the user. The basic steps are as follows, and can becarried out with most statistical software packages that arecommercially available:NOTE 1The interval in the above plot is nearly parallel to the regression line. This geometry will typically occur when OLS is the appropriate fittingtechnique and when the number of dat


    注意事项

    本文(ASTM D7366-2008(2013) 5000 Standard Practice for Estimation of Measurement Uncertainty for Data from Regression-based Methods《基于回归方法从预测不确定度获得数据的标准指南》.pdf)为本站会员(王申宇)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开