欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6938-2007b Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)《用核子法测量土壤和土壤集料的原地密度及含水量的标准试验方法(浅层)》.pdf

    • 资源ID:524039       资源大小:136.96KB        全文页数:11页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6938-2007b Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)《用核子法测量土壤和土壤集料的原地密度及含水量的标准试验方法(浅层)》.pdf

    1、Designation: D 6938 07bStandard Test Method forIn-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)1This standard is issued under the fixed designation D 6938; the number immediately following the designation indicates the year oforiginal adoption or, in t

    2、he case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method describes the procedures for measuringin-place density and moistur

    3、e of soil and soil-aggregate by useof nuclear equipment. The density of the material may bemeasured by direct transmission, backscatter, or backscatter/air-gap ratio methods. Measurements for water (moisture)content are taken at the surface in backscatter mode regardlessof the mode being used for de

    4、nsity. It is the intent of thissubcommittee that this standard replace D 2922 and D 3017.1.1.1 For limitations see Section 5 on Interferences.1.2 The total or wet density of soil and soil-aggregate ismeasured by the attenuation of gamma radiation where, indirect transmission, the source is placed at

    5、 a known depth up to300 mm (12 in.) and the detector (s) remains on the surface(some gauges may reverse this orientation); or in backscatter orbackscatter/air-gap the source and detector(s) both remain onthe surface.1.2.1 The density of the test sample in mass per unit volumeis calculated by compari

    6、ng the detected rate of gamma radia-tion with previously established calibration data.1.2.2 The dry density of the test sample is obtained bysubtracting the water mass per unit volume from the testsample wet density (Section 11). Most gauges display thisvalue directly.1.3 The gauge is calibrated to

    7、read the water mass per unitvolume of soil or soil-aggregate. When divided by the densityof water and then multiplied by 100, the water mass per unitvolume is equivalent to the volumetric water content. Thewater mass per unit volume is determined by the thermalizingor slowing of fast neutrons by hyd

    8、rogen, a component of water.The neutron source and the thermal neutron detector are bothlocated at the surface of the material being tested. The watercontent most prevalent in engineering and construction activi-ties is known as the gravimetric water content, w, and is theratio of the mass of the wa

    9、ter in pore spaces to the total massof solids, expressed as a percentage.1.4 Two alternative procedures are provided.1.4.1 Procedure A describes the direct transmission methodin which the gamma source rod extends through the base of thegauge into a pre-formed hole to a desired depth. The directtrans

    10、mission is the preferred method.1.4.2 Procedure B involves the use of a dedicated backscat-ter gauge or the source rod in the backscatter position. Thisplaces the gamma and neutron sources and the detectors in thesame plane.1.5 SI UnitsThe values stated in SI units are to beregarded as the standard.

    11、 The values in inch-pound units (ft lb units) are provided for information only.1.6 All observed and calculated values shall conform to theguide for significant digits and rounding established in PracticeD 6026.1.6.1 The procedures used to specify how data are collected,recorded, and calculated in t

    12、his standard are regarded as theindustry standard. In addition, they are representative of thesignificant digits that should generally be retained. The proce-dures used do not consider material variation, purpose forobtaining the data, special purpose studies, or any consider-ations for the users ob

    13、jectives; and it is common practice toincrease or reduce significant digits of reported data to becommensurate with these considerations. It is beyond the scopeof this standard to consider significant digits used in analysismethods for engineering design.1.7 This standard does not purport to address

    14、 all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 653 Terminology

    15、 Relating to Soil, Rock, and ContainedFluidsD 698 Test Methods for Laboratory Compaction Character-istics of Soil Using Standard Effort (12 400 ft-lbf/ft3(600kN-m/m3)1This test method is under the jurisdiction ofASTM Committee D18 on Soil andRock and is the direct responsibility of Subcommittee D18.

    16、08 Special andConstruction Control Tests.Current edition approved Sept. 1, 2007. Published September 2007. Originallyapproved in 2006. Last previous edition approved in 2007 as D 6938 07a.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at service

    17、astm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United

    18、 States.D 1556 Test Method for Density and Unit Weight of Soil inPlace by the Sand-Cone MethodD 1557 Test Methods for Laboratory Compaction Charac-teristics of Soil Using Modified Effort (56,000 ft-lbf/ft3(2,700 kN-m/m3)D 2167 Test Method for Density and Unit Weight of Soil inPlace by the Rubber Bal

    19、loon MethodD 2487 Practice for Classification of Soils for EngineeringPurposes (Unified Soil Classification System)D 2488 Practice for Description and Identification of Soils(Visual-Manual Procedure)D 2216 Test Methods for Laboratory Determination of Wa-ter (Moisture) Content of Soil and Rock by Mas

    20、sD 2937 Test Method for Density of Soil in Place by theDrive-Cylinder MethodD 3740 Practice for Minimum Requirements for AgenciesEngaged in the Testing and/or Inspection of Soil and Rockas Used in Engineering Design and ConstructionD 4253 Test Methods for Maximum Index Density and UnitWeight of Soil

    21、s Using a Vibratory TableD 4254 Test Methods for Minimum Index Density and UnitWeight of Soils and Calculation of Relative DensityD 4643 Test Method for Determination of Water (Moisture)Content of Soil by the Microwave Oven MethodD 4718 Practice for Correction of Unit Weight and WaterContent for Soi

    22、ls Containing Oversize ParticlesD 4944 Test Method for Field Determination of Water(Moisture) Content of Soil by the Calcium Carbide GasPressure TesterD 4959 Test Method for Determination of Water (Moisture)Content of Soil By Direct HeatingD 6026 Practice for Using Significant Digits in Geotechni-ca

    23、l DataD 7013 Guide for Nuclear Surface Moisture and DensityGauge Calibration Facility Setup3. Terminology3.1 Definitions: See Terminology D 653 for general defini-tions.3.2 Definitions of Terms Specific to This Standard:3.2.1 nuclear gaugea device containing one or moreradioactive sources used to me

    24、asure certain properties of soiland soil-aggregates.3.2.2 wet densitysame as bulk density (as defined inTerminology D 653); the total mass (solids plus water) per totalvolume of soil or soil-aggregate.3.2.3 dry densitysame as density of dry soil or rock (asdefined in Terminology D 653); the mass of

    25、solid particles perthe total volume of soil or soil-aggregate.3.2.4 gamma (radiation) sourcea sealed source of radio-active material that emits gamma radiation as it decays.3.2.5 neutron (radiation) sourcea sealed source of radio-active material that emits neutron radiation as it decays.3.2.6 Compto

    26、n scatteringthe interaction between agamma ray (photon) and an orbital electron where the gammaray loses energy and rebounds in a different direction.3.2.7 detectora device to detect and measure radiation.3.2.8 probea metal rod attached to a nuclear gauge inwhich a radioactive source or a detector i

    27、s housed. The rod canbe lowered to specified depths for testing. Probes containingonly a radioactive source are commonly referred to as “SourceRods.”3.2.9 thermalizationthe process of “slowing down” fastneutrons by collisions with light-weight atoms, such as hydro-gen.3.2.10 water contentthe ratio o

    28、f the mass of water con-tained in the pore spaces of soil or soil-aggregate, to the solidmass of particles in that material, expressed as a percentage(this is sometimes referred to in some scientific fields asgravimetric water content to differentiate it from volumetricwater cotent).3.2.11 volumetri

    29、c water contentthe volume of water as apercent of the total volume of soil or rock material.3.2.12 test count, nthe measured output of a detector fora specific type of radiation for a given test.3.2.13 prepared blocksblocks prepared of soil, solid rock,concrete, and engineered materials, that have c

    30、haracteristics ofvarious degrees of reproducible uniformity.4. Significance and Use4.1 The test method described is useful as a rapid, nonde-structive technique for in-place measurements of wet densityand water content of soil and soil-aggregate and the determi-nation of dry density.4.2 The test met

    31、hod is used for quality control and accep-tance testing of compacted soil and soil-aggregate mixtures asused in construction and also for research and development.The nondestructive nature allows repetitive measurements at asingle test location and statistical analysis of the results.4.3 DensityThe

    32、fundamental assumptions inherent in themethods are that Compton scattering is the dominant interac-tion and that the material is homogeneous.4.4 Water ContentThe fundamental assumptions inherentin the test method are that the hydrogen ions present in the soilor soil-aggregate are in the form of wate

    33、r as defined by thewater content derived from Test Methods D 2216, and that thematerial is homogeneous. (See 5.2)NOTE 1The quality of the result produced by this standard testmethod is dependent on the competence of the personnel performing it,and the suitability of the equipment and facilities used

    34、.Agencies that meetthe criteria of Practice D 3740 are generally considered capable ofcompetent and objective testing/sampling/inspection, and the like. Usersof this standard are cautioned that compliance with Practice D 3740 doesnot in itself assure reliable results. Reliable results depend on many

    35、factors; Practice D 3740 provides a means of evaluating some of thosefactors.5. Interferences5.1 In-Place Density Interferences5.1.1 Measurements may be affected by the chemical com-position of the material being tested.5.1.2 Measurements may be affected by non-homogeneoussoils and surface texture (

    36、see 10.2).5.1.3 Measurements in the Backscatter Mode are influencedmore by the density and water content of the material in closeproximity to the surface.D 6938 07b25.1.4 Measurements in the Direct Transmission mode are anaverage of the density from the bottom of the probe in the soilor soil aggrega

    37、te back up to the surface of the gauge.5.1.5 Oversize particles or large voids in the source-detectorpath may cause higher or lower density measurements. Wherelack of uniformity in the soil due to layering, aggregate orvoids is suspected, the test site should be excavated andvisually examined to det

    38、ermine if the test material is represen-tative of the in-situ material in general and if an oversizecorrection is required in accordance with Practice D 4718.5.1.6 The measured volume is approximately 0.0028m3(0.10 ft3) for the Backscatter Mode and 0.0057 m3(0.20 ft3)for the Direct Transmission Mode

    39、 when the test depth is 150mm (6 in.). The actual measured volume is indeterminate andvaries with the apparatus and the density of the material.5.1.7 Other radioactive sources must not be within9m(30ft.) of equipment in operation.5.2 In-Place Water (Moisture) Content Interferences5.2.1 The chemical

    40、composition of the material being testedcan affect the measurement and adjustments may be necessary(see Section 10.6). Hydrogen in forms other than water andcarbon will cause measurements in excess of the true value.Some chemical elements such as boron, chlorine, and cadmiumwill cause measurements l

    41、ower than the true value.5.2.2 The water content measured by this test method is notnecessarily the average water content within the volume of thesample involved in the measurement. Since this measurementis by backscatter in all cases, the value is biased by the watercontent of the material closest

    42、to the surface. The volume ofsoil and soil-aggregate represented in the measurement isindeterminate and will vary with the water content of thematerial. In general, the greater the water content of thematerial, the smaller the volume involved in the measurement.Approximately 50 % of the typical meas

    43、urement results fromthe water content of the upper 50 to 75 mm (2 to 3 in.).5.2.3 Other neutron sources must not be within 9 m (30 ft)of equipment in operation.6. Apparatus6.1 Nuclear Density / Moisture GaugeWhile exact detailsof construction of the apparatus may vary, the system shallconsist of:6.1

    44、.1 Gamma SourceA sealed source of high-energygamma radiation such as cesium or radium.6.1.2 Gamma DetectorAny type of gamma detector suchas a Geiger-Mueller tube(s).6.1.3 Fast Neutron SourceA sealed mixture of a radioac-tive material such as americium, radium and a target materialsuch as beryllium,

    45、or a neutron emitter such as californium-252.6.1.4 Slow Neutron DetectorAny type of slow neutrondetector such as boron trifluoride or helium-3 proportionalcounter.6.2 Reference StandardA block of material used forchecking instrument operation, correction of source decay, andto establish conditions f

    46、or a reproducible reference count rate.6.3 Site Preparation DeviceAplate, straightedge, or othersuitable leveling tool that may be used for planing the test siteto the required smoothness, and in the Direct TransmissionMethod, guiding the drive pin to prepare a perpendicular hole.6.4 Drive PinA pin

    47、of slightly larger diameter than theprobe in the Direct Transmission Instrument used to prepare ahole in the test site for inserting the probe.6.4.1 Drive Pin GuideA fixture that keeps the drive pinperpendicular to the test site. Generally part of the sitepreparation device.6.5 HammerHeavy enough to

    48、 drive the pin to the requireddepth without undue distortion of the hole.6.6 Drive Pin ExtractorAtool that may be used to removethe drive pin in a vertical direction so that the pin will notdistort the hole in the extraction process.6.7 Slide Hammer, with a drive pin attached, may also beused both t

    49、o prepare a hole in the material to be tested and toextract the pin without distortion to the hole.7. Hazards7.1 These gauges utilize radioactive materials that may behazardous to the health of the users unless proper precautionsare taken. Users of these gauges must become familiar withapplicable safety procedures and government regulations.7.2 Effective user instructions, together with routine safetyprocedures and knowledge of and compliance with RegulatoryRequirements, are a mandatory part of the operation andstorage of these gauges.8. Calibration8.1


    注意事项

    本文(ASTM D6938-2007b Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)《用核子法测量土壤和土壤集料的原地密度及含水量的标准试验方法(浅层)》.pdf)为本站会员(jobexamine331)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开