欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6595-2000(2005) Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emi.pdf

    • 资源ID:522985       资源大小:80.60KB        全文页数:6页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6595-2000(2005) Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emi.pdf

    1、Designation: D 6595 00 (Reapproved 2005)An American National StandardStandard Test Method forDetermination of Wear Metals and Contaminants in UsedLubricating Oils or Used Hydraulic Fluids by Rotating DiscElectrode Atomic Emission Spectrometry1This standard is issued under the fixed designation D 659

    2、5; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapprov

    3、al.1. Scope1.1 This test method covers the determination of wearmetals and contaminants in used lubricating oils and usedhydraulic fluids by rotating disc electrode atomic emissionspectroscopy (RDE-AES).1.2 This test method provides a quick indication for abnor-mal wear and the presence of contamina

    4、tion in new or usedlubricants and hydraulic fluids.1.3 This test method uses oil-soluble metals for calibrationand does not purport to relate quantitatively the values deter-mined as insoluble particles to the dissolved metals. Analyticalresults are particle size dependent and low results may beobta

    5、ined for those elements present in used oil samples as largeparticles.1.4 The test method is capable of detecting and quantifyingelements resulting from wear and contamination ranging fromdissolved materials to particles approximately 10 m in size.1.5 The values stated in SI units are to be regarded

    6、 as thestandard. The values given in parentheses are for informationonly. The preferred units are mg/kg (ppm by mass).1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-pria

    7、te safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 4057 Practice for Manual Sampling of Petroleum andPetroleum Products3. Terminology3.1 Definitions:3.1.1 burn, vtin emission spectroscopy, to vaporize an

    8、dexcite a specimen with sufficient energy to generate spectralradiation.3.1.2 calibration, nthe determination of the values of thesignificant parameters by comparison with values indicated bya set of reference standards.3.1.3 calibration curve, nthe graphical or mathematicalrepresentation of a relat

    9、ionship between the assigned (known)values of standards and the measured responses from themeasurement system.3.1.4 calibration standard, na standard having an ac-cepted value (reference value) for use in calibrating a measure-ment instrument or system.3.1.5 emission spectroscopy, nmeasurement of en

    10、ergyspectrum emitted by or from an object under some form ofenergetic stimulation; for example, light, electrical discharge,and so forth.3.2 Definitions of Terms Specific to This Standard:3.2.1 arc discharge, na self-sustaining, high current den-sity, high temperature discharge, uniquely characteriz

    11、ed by acathode fall nearly equal to the ionization potential of the gasor vapor in which it exists.3.2.2 check sample, na reference material usually pre-pared by a laboratory for its own use as a calibration standard,as a measurement control standard, or for the qualification of ameasurement method.

    12、3.2.3 contaminant, nmaterial in an oil sample that maycause abnormal wear or lubricant degradation.3.2.4 counter electrode, neither of two graphite electrodesin an atomic emission spectrometer across which an arc orspark is generated.3.2.5 graphite disc electrode, na soft form of the elementcarbon m

    13、anufactured into the shape of a disc for use as acounter electrode in arc/spark spectrometers for oil analysis.3.2.6 graphite rod electrode, na soft form of the elementcarbon manufactured into the shape of a rod for use as acounter electrode in arc/spark spectrometers for oil analysis.1This test met

    14、hod is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.03 on Elemental Analysis.Current edition approved May 1, 2005. Published June 2005. Originallyapproved in 2000. Last previous edition approved in 2000 as D 6595

    15、00.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO B

    16、ox C700, West Conshohocken, PA 19428-2959, United States.3.2.7 profiling, nto set the actual position of the entranceslit to produce optimum measurement intensity.3.2.8 standardization, nthe process of reestablishing andcorrecting a calibration curve through the analysis of at leasttwo known oil sta

    17、ndards.3.2.9 uptake rate, nthe amount of oil sample that isphysically carried by the rotating disc electrode into the arc foranalysis.3.2.10 wear metal, nmaterial resulting from damage to asolid surface due to relative motion between that surface and acontacting substance or substances.4. Summary of

    18、 Test Method4.1 Wear metals and contaminants in a used oil test speci-men are evaporated and excited by a controlled arc dischargeusing the rotating disk technique. The radiant energies ofselected analytical lines and one or more references arecollected and stored by way of photomultiplier tubes, ch

    19、argecoupled devices or other suitable detectors. A comparison ismade of the emitted intensities of the elements in the used oiltest specimen against those measured with calibration stan-dards. The concentrations of the elements present in the oil testspecimen are calculated and displayed. They may a

    20、lso beentered into a data base for processing.5. Significance and Use5.1 Used Lubricating OilThe determination of debris inused oil is a key diagnostic method practiced in machinecondition monitoring programs. The presence or increase inconcentration of specific wear metals can be indicative of thee

    21、arly stages of wear if there are baseline concentration data forcomparison.Amarked increase in contaminant elements can beindicative of foreign materials in the lubricants, such asantifreeze or sand, which may lead to wear or lubricantdegradation. The test method identifies the metals and theirconce

    22、ntration so that trends relative to time or distance can beestablished and corrective action can be taken prior to moreserious or catastrophic failure.6. Interferences6.1 SpectralMost spectral interferences can be avoided byjudicious choice of spectral lines. High concentrations ofadditive elements

    23、can have an interfering influence on thespectral lines used for determining wear metals. Instrumentmanufacturers usually compensate for spectral interferencesduring factory calibration. A background correction system,which subtracts unwanted intensities on either side of thespectral line, shall also

    24、 be used for this purpose. When spectralinterferences cannot be avoided with spectral line selection andbackground correction, the necessary corrections shall be madeusing the computer software supplied by the instrument manu-facturer.6.2 Viscosity EffectsDifferences in viscosity of used oilsamples

    25、will cause differences in uptake rates. Internal refer-ences of the instrument will compensate for a portion of thedifferences. In used oil applications, the hydrogen 486.10 nmspectral line has become the industry standard for use as aninternal reference. Without a reference, trended data on used oi

    26、lwill be adversely affected if the sample base stock has adifferent viscosity from the base line samples.6.3 ParticulateWhen large particles over 10 m in sizeare detected, the analytical results will be lower than the actualconcentration they represent. Large particles may not beeffectively transpor

    27、ted by the rotating disk electrode sampleintroduction system into the arc, nor will they be fullyvaporized by the spark.7. Apparatus7.1 Electrode SharpenerAn electrode sharpener is neces-sary to remove the contaminated portion of the rod electroderemaining from the previous determination. It also fo

    28、rms a new160 angle on the end of the electrode. Electrode sharpenersare not required for instruments using a pre-shaped discelectrode as the counter electrode.7.2 Rotating Disc Electrode Atomic Emission Spectrometer,a simultaneous spectrometer consisting of excitation source,polychromator optics, an

    29、d a readout system. Suggested ele-ments and wavelengths are listed in Table 1. When multiplewavelengths are listed, they are in the order of preference ordesired analytical range.7.3 Heated Ultrasonic Bath (Recommended), an ultrasonicbath to heat and homogenize used oil samples to bring particlesint

    30、o homogeneous suspension. The ultrasonic bath shall beused on samples containing large amount of debris and thosethat have been in transit or stored for 48 hours or longer.8. Reagents and Materials8.1 Base Oil, a 75 cSt base oil free of analyte to be used asa calibration blank or for blending calibr

    31、ation standards.8.2 Check Samples, An oil standard or sample of knownconcentration which is periodically analyzed as a go/no gosample to confirm the need for standardization based on anallowable 610 % accuracy limit.8.3 Cleaning Solution, An environmentally safe, non-chlorinated, rapid evaporating,

    32、and non-film producing solvent,to remove spilled or splashed oil sample in the sample stand.8.4 Disc Electrode, a graphite disc electrode of high-puritygraphite (spectroscopic grade). Dimensions of the electrodesshall conform to those shown in Fig. 1.8.5 Glass Cleaning Solution, capable of cleaning

    33、and re-moving splashed oil sample from the quartz window thatprotects the entrance lens and fiber optic. Isopropyl rubbingTABLE 1 Elements and Recommended WavelengthsElement Wavelength, nm Element Wavelength, nmAluminum 308.21 Nickel 341.48Barium 230.48, 455.40 Phosphorus 255.32, 214.91Boron 249.67

    34、Potassium 766.49Calcium 393.37, 445.48 Silicon 251.60Chromium 425.43 Silver 328.07, 243.78Copper 324.75, 224.26 Sodium 588.89, 589.59Iron 259.94 Tin 317.51Lead 283.31 Titanium 334.94Lithium 670.78 Tungsten 400.87Manganese 403.07, 294.92 Vanadium 290.88, 437.92Magnesium 280.20, 518.36 Zinc 213.86Moly

    35、bdenum 281.60D 6595 00 (2005)2alcohol or ammonia based window cleaner has been found tobe suitable for this purpose.8.6 Organometallic Standards, single or multi-elementblended standards for use as the high concentration standardfor instrument standardization purposes or for use as a checksample to

    36、confirm calibration. Typical concentrations in theupper calibration point standard for used oil applications is 100mg/kg for wear metals and contaminants, and 900 mg/kg foradditive elements.8.6.1 Standards have a shelf-life and shall not be used tostandardize an instrument if they have exceeded the

    37、expirationdate.8.7 Counter ElectrodeThe counter electrode can be eithera rod or a disc. The counter electrode must be high-puritygraphite (spectroscopic grade). Dimensions of the counterelectrodes shall conform to those shown in Fig. 2.8.8 Specimen HoldersA variety of specimen holders canbe used for

    38、 the analysis of used oil samples. Disposablespecimen holders must be discarded after each analysis andreusable specimen holders must be cleaned after each analysis.All specimen holders must be free of contamination and shallbe stored accordingly. Specimen holder and covers shall beused on hydraulic

    39、 oil samples that may catch on fire during theanalysis.9. Sampling9.1 The used oil sample taken for the analysis must berepresentative of the entire system. Good sampling proceduresare key to good analyses and samples must be taken inaccordance with Practice D 4057.10. Preparation of Test Specimen10

    40、.1 HomogenizationUsed oil samples may contain par-ticulate matter and, in order to be representative, must alwaysbe vigorously shaken prior to pouring a test specimen foranalysis.10.2 Ultrasonic HomogenizationSamples that have beenin transit for several days, idle in storage or very viscous, shallbe

    41、 placed in a heated ultrasonic bath to break up clusters ofparticles and to bring them back into suspension. The samplesshall be vigorously shaken after being in the ultrasonic bathand prior to pouring a test specimen for analysis. The bathtemperature shall be at least 60C and the total agitation ti

    42、meat least 2 min.10.3 Specimen HoldersUsed oil samples and oil standardsshall be poured into a specimen holder of at least 1 mLcapacityprior to analysis. Exercise care to pour the sample consistentlyto the same level in the specimen holders to maintain goodrepeatability of analysis.10.4 Specimen Tab

    43、leThe specimen table shall be adjustedso that when it is in the fully raised position, at least one-thirdof the disc electrode is immersed in the oil test specimen.11. Preparation of Apparatus11.1 Warm-up BurnsIf the instrument has been idle forseveral hours, it may be necessary to conduct at least

    44、threewarm-up burns to stabilize the excitation source. The warm-upprocedure can be performed with any oil sample or standard.Consult the manufacturers instructions for specific warm-uprequirements.11.2 Optical ProfilePerform the normal optical profileprocedure called for in the operation manual of t

    45、he instrument.An optical profile shall also be performed if the instrument hasbeen inoperative for an extended period of time or if thetemperature has shifted more than 10C since the last calibra-tion check.11.3 Validation CheckA go/no go standardization checkcan be performed with one or more check

    46、samples to confirmcalibration prior to the analysis of routine samples. A calibra-tion standard or known oil sample can be used for this purpose.The optical profile and standardization routine recommendedby the instrument manufacturer shall be performed if thevalidation check fails to meet the 610 %

    47、 accuracy guidelinesfor each element of interest.12. Calibration12.1 Factory CalibrationThe analytical range for eachelement is established through the analysis of organometallicstandards at known concentrations.Acalibration curve for eachelement is established and correction factors are set to prod

    48、ucea linear response. Analyses of test specimens must be per-formed within the linear range of response. The typicalelements and recommended wavelengths determined in theused oil analysis applications are listed in Table 1.12.2 Routine StandardizationA minimum of a two pointroutine standardization s

    49、hall be performed if the instrumentfails the validation check or at the start of each working shift.A minimum of three analyses shall be made using the blankand working standard.13. Procedure13.1 Analysis of Oil SamplesAnalyze the test specimen inthe same calibration curve program and manner as the stan-dardization standards. A new disc electrode and re-pointed rodelectrode or new counter disc electrode must be used for eachanalysis. A laboratory grade paper towel or installation toolshall be used to install the disc electrode in order to protect


    注意事项

    本文(ASTM D6595-2000(2005) Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emi.pdf)为本站会员(赵齐羽)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开