欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6589-2005 Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance《大气散射模型性能的统计评价的标准指南》.pdf

    • 资源ID:522958       资源大小:217.72KB        全文页数:17页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6589-2005 Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance《大气散射模型性能的统计评价的标准指南》.pdf

    1、Designation: D 6589 05Standard Guide forStatistical Evaluation of Atmospheric Dispersion ModelPerformance1This standard is issued under the fixed designation D 6589; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last

    2、revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide provides techniques that are useful for thecomparison of modeled air concentrations with observed fielddata. Su

    3、ch comparisons provide a means for assessing amodels performance, for example, bias and precision oruncertainty, relative to other candidate models. Methodologiesfor such comparisons are yet evolving; hence, modificationswill occur in the statistical tests and procedures and dataanalysis as work pro

    4、gresses in this area. Until the interestedparties agree upon standard testing protocols, differences inapproach will occur. This guide describes a framework, orphilosophical context, within which one determines whether amodels performance is significantly different from othercandidate models. It is

    5、suggested that the first step should be todetermine which models estimates are closest on average tothe observations, and the second step would then test whetherthe differences seen in the performance of the other models aresignificantly different from the model chosen in the first step.An example p

    6、rocedure is provided inAppendix X1 to illustratean existing approach for a particular evaluation goal. Thisexample is not intended to inhibit alternative approaches ortechniques that will produce equivalent or superior results. Asdiscussed in Section 6, statistical evaluation of model perfor-mance i

    7、s viewed as part of a larger process that collectively isreferred to as model evaluation.1.2 This guide has been designed with flexibility to allowexpansion to address various characterizations of atmosphericdispersion, which might involve dose or concentration fluctua-tions, to allow development of

    8、 application-specific evaluationschemes, and to allow use of various statistical comparisonmetrics. No assumptions are made regarding the manner inwhich the models characterize the dispersion.1.3 The focus of this guide is on end results, that is, theaccuracy of model predictions and the discernment

    9、 of whetherdifferences seen between models are significant, rather thanoperational details such as the ease of model implementation orthe time required for model calculations to be performed.1.4 This guide offers an organized collection of informationor a series of options and does not recommend a s

    10、pecific courseof action. This guide cannot replace education or experienceand should be used in conjunction with professional judgment.Not all aspects of this guide may be applicable in all circum-stances. This guide is not intended to represent or replace thestandard of care by which the adequacy o

    11、f a given professionalservice must be judged, nor should it be applied withoutconsideration of a projects many unique aspects. The word“Standard” in the title of this guide means only that thedocument has been approved through the ASTM consensusprocess.1.5 This standard does not purport to address a

    12、ll of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and to determine theapplicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 1356 Terminology

    13、 Relating to Sampling and Analysis ofAtmospheres3. Terminology3.1 DefinitionsFor definitions of terms used in this guide,refer to Terminology D 1356.3.2 Definitions of Terms Specific to This Standard:3.2.1 atmospheric dispersion model, nan idealization ofatmospheric physics and processes to calculat

    14、e the magnitudeand location of pollutant concentrations based on fate, trans-port, and dispersion in the atmosphere. This may take the formof an equation, algorithm, or series of equations/algorithmsused to calculate average or time-varying concentration. Themodel may involve numerical methods for s

    15、olution.3.2.2 dispersion, absolute, nthe characterization of thespreading of material released into the atmosphere based on acoordinate system fixed in space.1This guide is under the jurisdiction of ASTM Committee D22 on Air Qualityand is the direct responsibility of Subcommittee D22.11 on Meteorolo

    16、gy.Current edition approved October 1, 2005. Published October 2005. Originallyapproved in 2000. Last previous edition approved in 2000 as D 7144 - 00.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStan

    17、dards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.2.3 dispersion, relative, nthe characterization of thespreading of material released into the

    18、 atmosphere based on acoordinate system that is relative to the local median positionof the dispersing material.3.2.4 evaluation objective, na feature or characteristic,which can be defined through an analysis of the observedconcentration pattern, for example, maximum centerline con-centration or la

    19、teral extent of the average concentration patternas a function of downwind distance, which one desires toassess the skill of the models to reproduce.3.2.5 evaluation procedure, nthe analysis steps to betaken to compute the value of the evaluation objective from theobserved and modeled patterns of co

    20、ncentration values.3.2.6 fate, nthe destiny of a chemical or biological pol-lutant after release into the environment.3.2.7 model input value, ncharacterizations that must beestimated or provided by the model developer or user beforemodel calculations can be performed.3.2.8 regime, na repeatable nar

    21、row range of conditions,defined in terms of model input values, which may or may notbe explicitly employed by all models being tested, needed fordispersion model calculations. It is envisioned that the disper-sion observed should be similar for all cases having similarmodel input values.3.2.9 uncert

    22、ainty, nrefers to a lack of knowledge aboutspecific factors or parameters. This includes measurementerrors, sampling errors, systematic errors, and differencesarising from simplification of real-world processes. In prin-ciple, uncertainty can be reduced with further information orknowledge (1)3.3.2.

    23、10 variability, nrefers to differences attributable totrue heterogeneity or diversity in atmospheric processes thatresult in part from natural random processes. Variabilityusually is not reducible by further increases in knowledge, butit can in principle be better characterized (1).4. Summary of Gui

    24、de4.1 Statistical evaluation of dispersion model performancewith field data is viewed as part of a larger process thatcollectively is called model evaluation. Section 6 discusses thecomponents of model evaluation.4.2 To statistically assess model performance, one mustdefine an overall evaluation goa

    25、l or purpose. This will suggestfeatures (evaluation objectives) within the observed and mod-eled concentration patterns to be compared, for example,maximum surface concentrations, lateral extent of a dispersingplume. The selection and definition of evaluation objectivestypically are tailored to the

    26、models capabilities and intendeduses. The very nature of the problem of characterizing airquality and the way models are applied make one single orabsolute evaluation objective impossible to define that issuitable for all purposes. The definition of the evaluationobjectives will be restricted by the

    27、 limited range conditionsexperienced in the available comparison data suitable for use.For each evaluation objective, a procedure will need to bedefined that allows definition of the evaluation objective fromthe available observations of concentration values.4.3 In assessing the performance of air q

    28、uality models tocharacterize a particular evaluation objective, one shouldconsider what the models are capable of providing. As dis-cussed in Section 7, most models attempt to characterize theensemble average concentration pattern. If such models shouldprovide favorable comparisons with observed con

    29、centrationmaxima, this is resulting from happenstance, rather than skill inthe model; therefore, in this discussion, it is suggested a modelbe assessed on its ability to reproduce what it was designed toproduce, for at least in these comparisons, one can be assuredthat zero bias with the least amoun

    30、t of scatter is by definitiongood model performance.4.4 As an illustration of the principles espoused in thisguide, a procedure is provided in Appendix X1 for comparisonof observed and modeled near-centerline concentration values,which accommodates the fact that observed concentrationvalues include

    31、a large component of stochastic, and possiblydeterministic, variability unaccounted for by current models.The procedure provides an objective statistical test of whetherdifferences seen in model performance are significant.5. Significance and Use5.1 Guidance is provided on designing model evaluation

    32、performance procedures and on the difficulties that arise instatistical evaluation of model performance caused by thestochastic nature of dispersion in the atmosphere. It is recog-nized there are examples in the literature where, knowingly orunknowingly, models were evaluated on their ability to de-

    33、scribe something which they were never intended to charac-terize. This guide is attempting to heighten awareness, andthereby, to reduce the number of “unknowing” comparisons. Agoal of this guide is to stimulate development and testing ofevaluation procedures that accommodate the effects of naturalva

    34、riability. A technique is illustrated to provide informationfrom which subsequent evaluation and standardization can bederived.6. Model Evaluation6.1 BackgroundAir quality simulation models have beenused for many decades to characterize the transport anddispersion of material in the atmosphere (2-4)

    35、. Early evalua-tions of model performance usually relied on linear least-squares analyses of observed versus modeled values, usingtraditional scatter plots of the values, (5-7). During the 1980s,attempts have been made to encourage the standardization ofmethods used to judge air quality model perfor

    36、mance (8-11).Further development of these proposed statistical evaluationprocedures was needed, as it was found that the rote applica-tion of statistical metrics, such as those listed in (8), wasincapable of discerning differences in model performance (12),whereas if the evaluation results were sort

    37、ed by stability anddistance downwind, then differences in modeling skill could bediscerned (13). It was becoming increasingly evident that themodels were characterizing only a small portion of the ob-served variations in the concentration values (14). To betterdeduce the statistical significance of

    38、differences seen in modelperformance in the face of large unaccounted for uncertainties3The boldface numbers in parentheses refer to the list of references at the end ofthis standard.D6589052and variations, investigators began to explore the use ofbootstrap techniques (15). By the late 1980s, most o

    39、f the modelperformance evaluations involved the use of bootstrap tech-niques in the comparison of maximum values of modeled andobserved cumulative frequency distributions of the concentra-tions values (16). Even though the procedures and metrics to beemployed in describing the performance of air qua

    40、lity simula-tion models are still evolving (17-19), there has been a generalacceptance that defining performance of air quality modelsneeds to address the large uncertainties inherent in attemptingto characterize atmospheric fate, transport and dispersionprocesses. There also has been a consensus re

    41、ached on thephilosophical reasons that models of earth science processescan never be validated, in the sense of claiming that a model istruthfully representing natural processes. No general empiricalproposition about the natural world can be certain, since therewill always remain the prospect that f

    42、uture observations maycall the theory in question (20). It is seen that numerical modelsof air pollution are a form of a highly complex scientifichypothesis concerning natural processes, that can be confirmedthrough comparison with observations, but never validated.6.2 Components of Model Evaluation

    43、A model evaluationincludes science peer reviews and statistical evaluations withfield data. The completion of each of these componentsassumes specific model goals and evaluation objectives (seeSection 10) have been defined.6.3 Science Peer ReviewsGiven the complexity of char-acterizing atmospheric p

    44、rocesses, and the inevitable necessityof limiting model algorithms to a resolvable set, one compo-nent of a model evaluation is to review the models science toconfirm that the construct is reasonable and defensible for thedefined evaluation objectives. A key part of the scientific peerreview will in

    45、clude the review of residual plots where modeledand observed evaluation objectives are compared over a rangeof model inputs, for example, maximum concentrations as afunction of estimated plume rise or as a function of distancedownwind.6.4 Statistical Evaluations with Field DataThe objectivecompariso

    46、n of modeled concentrations with observed field dataprovides a means for assessing model performance. Due to thelimited supply of evaluation data sets, there are severe practicallimits in assessing model performance. For this reason, theconclusions reached in the science peer reviews (see 6.3) andth

    47、e supportive analyses (see 6.5) have particular relevance indeciding whether a model can be applied for the defined modelevaluation objectives. In order to conduct a statistical compari-son, one will have to define one or more evaluation objectivesfor which objective comparisons are desired (Section

    48、 10). Asdiscussed in 8.4.4, the process of summarizing the overallperformance of a model over the range of conditions experi-enced within a field experiment typically involves determiningtwo points for each of the model evaluation objectives: whichof the models being assessed has on average the smal

    49、lestcombined bias and scatter in comparisons with observations,and whether the differences seen in the comparisons with theother models statistically are significant in light of the uncer-tainties in the observations.6.5 Other Tasks Supportive to Model EvaluationAs atmo-spheric dispersion models become more sophisticated, it is noteasy to detect coding errors in the implementation of the modelalgorithms. And as models become more complex, discerningthe sensitivity of the modeling results to input parametervariations becomes less clear; hence, two important tasks th


    注意事项

    本文(ASTM D6589-2005 Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance《大气散射模型性能的统计评价的标准指南》.pdf)为本站会员(amazingpat195)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开