欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6526-2010 1875 Standard Test Method for Analysis of Toluene by Capillary Column Gas Chromatography《毛细管柱气相色谱法进行甲苯分析的标准试验方法》.pdf

    • 资源ID:522767       资源大小:97.77KB        全文页数:5页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6526-2010 1875 Standard Test Method for Analysis of Toluene by Capillary Column Gas Chromatography《毛细管柱气相色谱法进行甲苯分析的标准试验方法》.pdf

    1、Designation: D6526 10Standard Test Method forAnalysis of Toluene by Capillary Column GasChromatography1This standard is issued under the fixed designation D6526; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revi

    2、sion. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers the determination of hydrocar-bon impurities typically found in, and the purity of, samplescontaining

    3、98 wt % and greater toluene. This test method isapplicable to impurity concentrations in the range of 0.0005 to1.6 wt %.1.2 Monocyclic aromatic hydrocarbons containing 6through 8 carbon atoms, cumene, 1,4dioxane, and nonaro-matic aliphatic hydrocarbons containing up to 12 carbon atomscan be detected

    4、 by this test method. The nonaromatic com-pounds are determined as a composite.1.3 The following applies to all specified limits in this testmethod: for purposes of determining conformance with thistest method, an observed value or a calculated value shall berounded off “to the nearest unit” in the

    5、last right-hand digitused in expressing the specification limit, in accordance withthe rounding-off method of Practice E29.1.4 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.5 This standard does not purport to address all of

    6、thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 9.2. Referenced Document

    7、s2.1 ASTM Standards:2D3437 Practice for Sampling and Handling Liquid CyclicProductsD4790 Terminology ofAromatic Hydrocarbons and RelatedChemicalsD6809 Guide for Quality Control and Quality AssuranceProcedures for Aromatic Hydrocarbons and Related Ma-terialsE29 Practice for Using Significant Digits i

    8、n Test Data toDetermine Conformance with SpecificationsE355 Practice for Gas Chromatography Terms and Rela-tionshipsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE1510 Practice for Installing Fused Silica Open TubularCapillary Columns in Gas Chromato

    9、graphs2.2 Other Document:OSHA Regulations, 29 CFR paragraphs 1910.1000 and1910.120033. Terminology3.1 See Terminology D4790 for definitions of terms used inthis test method.4. Summary of Test Method4.1 A portion of the sample is injected into a gas chromato-graph using a microlitre syringe at the sp

    10、ecified conditions ofthe test method. The toluene and other components areseparated as they are transported through the column by aninert carrier gas. The components in the effluent are measuredby a flame ionization detector (FID). The area of the impuritypeaks and toluene are electronically integra

    11、ted. The peak areasare corrected with effective carbon number (ECN)4responsefactors and normalized to 100.0000 %.5. Significance and Use5.1 This test method is suitable for determining the concen-trations of known impurities in refined toluene and for use as1This test method is under the jurisdictio

    12、n of ASTM Committee D16 onAromatic Hydrocarbons and Related Chemicals and is the direct responsibility ofSubcommittee D16.01 on Benzene, Toluene, Xylenes, Cyclohexane and TheirDerivatives.Current edition approved June 1, 2010. Published June 2010. Originallyapproved in 2000. Last previous edition ap

    13、proved in 2003 as D6526 - 031. DOI:10.1520/D6526-10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Availabl

    14、e from U.S. Government Printing Office Superintendent of Documents,732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http:/www.access.gpo.gov.4Scanlon, J. T., and Willis, D. E., “Calculation of Ionization Detector RelativeResponse Factors Using the Effective Carbon Number Concept,” Journ

    15、al ofChromatographic Science, Vol 35, August, 1985, pp. 333-339.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.an integral quality control tool where toluene is produ

    16、ced orused in manufacturing.5.2 Toluene purity is reported, but a chromatographic analy-sis cannot determine absolute purity if unknown or undetectedcomponents are present in the sample.6. Interferences6.1 If present, nonaromatic hydrocarbons of 13 carbons orgreater, alcohols, ethers, and other simi

    17、lar organic compoundscan interfere with this test method by co-eluting with thearomatic hydrocarbons.6.2 Compounds not detected by a FID are not determined bythis test method.6.3 Nonvolatile material is not determined.7. Apparatus7.1 Gas Chromatograph (GC)any GC built for capillarycolumn chromatogra

    18、phy. The system shall have sufficientsensitivity, linearity, and range to obtain a minimum peakheight response for 0.0010 wt % impurity of twice the height ofthe signal background noise, while not exceeding the full scaleof either the detector or the electronic integration for the majorcomponent. It

    19、 shall have a split injection system that will notdiscriminate over the boiling range of the samples analyzed.The system should be capable of operating at conditions givenin Table 1.7.2 Recorderelectronic integration is recommended.7.3 Capillary Columnfused silica capillary column with1,2,3-tris-2-c

    20、yano-ethoxypropane (TCEP) phase is recom-mended. Polyethylene glycol (PEG) columns have been suc-cessfully used. Other columns may be used after it has beenestablished that such a column is capable of separating allmajor impurities under operating conditions appropriate for thecolumn.7.4 Microsyring

    21、ecapable of delivering 1 L of sample.8. Reagents8.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. It is intended that all reagents shall conform tothe specifications of the Committee on Analytical Reagents ofthe American Chemical Society,5where such specifications areavailable

    22、, unless otherwise indicated. Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.8.2 Carrier GasHelium, 99.99 mole % minimum, is rec-ommended.8.3 FID Detector Gases:8.3.1 Hydrog

    23、en99.99 mole % minimum.8.3.2 Airless than 10 ppm each of total hydrocarbons andwater.9. Hazards9.1 Consult current OSHA regulations, suppliers MaterialSafety Data Sheets, and local regulations for all materials usedin this test method.10. Sample Handling10.1 Collect the samples in accordance with Pr

    24、acticeD3437.10.2 To preserve sample integrity (consistency) and preventthe loss of volatile components, which may be in somesamples, do not uncover samples any longer than necessary.11. Preparation of Apparatus11.1 Follow the manufacturers instructions for mountingand conditioning the column in the

    25、chromatograph.11.2 Adjust the instrument to the conditions as described inTable 1 to give the proper separations.Allow sufficient time forthe instrument to reach equilibrium as indicated by a stablebaseline. See Practices E355 and E1510 for additional infor-mation on gas chromatography practices and

    26、 terminology.12. Procedure12.1 Inject an appropriate amount of specimen, typically 1.0L, into the chromatograph. A low purity toluene samplechromatogram, which shows the relative retention time ofcomponents typically found in commercial toluene, is illus-trated in Fig. 1.NOTE 1Since TCEP is a nonbon

    27、ded phase, significant retention timeshifts can occur with column condition.12.2 Measure the area of all peaks. The nonaromaticsfraction includes all peaks eluting before benzene. Sum to-gether all nonaromatic peaks and report as a total area.5Reagent Chemicals, American Chemical Society Specificati

    28、ons, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Analar Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention,

    29、Inc. (USPC), Rockville,MD.TABLE 1 Typical Instrumental ParametersDetector: Flame ionizationDetector temperature, C 150CColumn: 50 m by 0.25 mmTubing Fused silicaStationary phase TCEPFilm thickness, m 0.40Column temperature, C 70Carrier Gas HeliumLinear velocity at 70C, cm/s 25Inlet: SplitInjection p

    30、ort temperature, C 150CSplit ratio 40Split flow, mL/min 55Sample size, L 1.0D6526 102FIG. 1 Low Purity Toluene Sample ChromatogramD652610313. Calculation13.1 Using the ECN weight response factors listed in Table2, calculate the concentration of each component as follows:Ci5 100 3 Ai3 Ri! /(i51nAi3 R

    31、i! (1)where:Ci= concentration results for component(s) i, weight %,Ai= peak area of component(s) i, andRi= ECN response factor for component(s) i.14. Report14.1 Report the following information:14.1.1 Report impurity concentrations less than 0.0005 % as0.0005 %.14.1.2 Report greater than 0.0005 % ea

    32、ch of the nonaromat-ics, benzene, ethylbenzene, xylenes, and cumene to the nearest0.0001 %.14.1.3 Report toluene purity to the nearest 0.01 %.15. Precision and Bias15.1 PrecisionThe following criteria should be used tojudge the acceptability of results obtained by this test method(95 % confidence le

    33、vel). The precision criteria were derivedfrom six laboratories performing three analyses on threestandards over a two-day period. The results of the precisionstudy were calculated using Practice E691.15.1.1 Intermediate Precision (formerly calledRepeatability)Duplicated results obtained on the sames

    34、ample in the same laboratory by the same operator on thesame instrument should not be considered suspect unless theydiffer by more than the intermediate precision value shown inTable 3.15.1.2 ReproducibilityDuplicated results obtained on thesame sample by different laboratories, with different opera

    35、tors,different instruments, and at different times should not differ bymore than the reproducibility value listed in Table 3.15.1.3 BiasSystematic deviation of the method averagevalue or the measured value from an accepted reference value.Since the absolute purity of the toluene solvent could not be

    36、determined, an absolute statement of bias could not be deter-mined from this study. An estimate of bias was made bypreparing three gravimetric standards with three differentconcentrations of impurities. The standards were then analyzedas unknowns in the interlaboratory study (see Table 4).16. Qualit

    37、y Guidelines16.1 Laboratories shall have a quality control system inplace.16.1.1 Confirm the performance of the test instrument ortest method by analyzing a quality control sample followingthe guidelines of standard statistical quality control practices.16.1.2 A quality control sample is a stable ma

    38、terial isolatedfrom the production process and representative of the samplebeing analyzed.16.1.3 When QA/QC protocols are already established inthe testing facility, these protocols are acceptable when theyconfirm the validity of test results.16.1.4 When there are no QA/QC protocols established inth

    39、e testing facility, use the guidelines described in GuideD6809 or similar statistical quality control practices.17. Keywords17.1 benzene; gas chromatography; impurities; toluenepurity;1,4-dioxaneTABLE 2 Effective Carbon Number Response FactorsComponent Response Factor (Weight)Nonaromatics: 0.9975Ben

    40、zene 0.9100Toluene 0.9200Ethylbenzene 0.9275p-Xylene 0.9275m-Xylene 0.9275o-Xylene 0.9275Cumene 0.93331,4-Dioxane 3.0800TABLE 3 Intermediate Precision and ReproducibilityActual(Weight %)IntermediatePrecisionReproducibilityNonAromaticStd #1 1.6314 0.0078 0.2024Std #2 0.9718 0.0039 0.1243Std #3 0.0207

    41、 0.0022 0.0081BenzeneStd #1 0.0006 0.0001 0.0002Std #2 0.0010 0.0002 0.0003Std #3 0.0301 0.0008 0.0070TolueneStd #1 98.2688 0.0084 0.2142Std #2 98.9756 0.0042 0.1327Std #3 99.8967 0.0025 0.0272EthylBenzeneStd #1 0.0987 0.0015 0.0185Std #2 0.0506 0.0007 0.0116Std #3 0.0203 0.0007 0.00511,4dioxaneStd

    42、#1 0.0005 0.0004 0.0008Std #2 0.0010 0.0007 0.0008Std #3 0.0302 0.0012 0.0079TABLE 4 Estimated BiasActual(weight %)Mean DifferenceNonAromaticStd #1 1.6314 1.6404 0.0090Std #2 0.9718 0.9854 0.0136Std #3 0.0207 0.0254 0.0047BenzeneStd #1 0.0006 0.0006 0.0000Std #2 0.0010 0.0011 0.0001Std #3 0.0301 0.0

    43、286 0.0015TolueneStd #1 98.2688 98.2603 0.0085Std #2 98.9756 98.9615 0.0141Std #3 99.8967 99.8905 0.0062EthylBenzeneStd #1 0.0987 0.0984 0.0003Std #2 0.0506 0.0509 0.0003Std #3 0.0203 0.0204 0.00011,4dioxaneStd #1 0.0005 0.0005 0.0000Std #2 0.0010 0.0012 0.0002Std #3 0.0302 0.0321 0.0019D6526 104SUM

    44、MARY OF CHANGESCommittee D16 has identified the location of selected changes to this standard since the last issue(D6526 - 031) that may impact the use of this standard. (Approved June 1, 2010.)(1) Section 1 Scope added statement on units. (2) Section 16 Quality Guidelines added.ASTM International t

    45、akes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own

    46、responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addr

    47、essed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at

    48、the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).D6526 105


    注意事项

    本文(ASTM D6526-2010 1875 Standard Test Method for Analysis of Toluene by Capillary Column Gas Chromatography《毛细管柱气相色谱法进行甲苯分析的标准试验方法》.pdf)为本站会员(hopesteam270)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开