欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6185-2010 1875 Standard Practice for Evaluating Compatibility of Binary Mixtures of Lubricating Greases《润滑脂的二元混合物的相容性评估的标准实施规程》.pdf

    • 资源ID:521796       资源大小:184.15KB        全文页数:8页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6185-2010 1875 Standard Practice for Evaluating Compatibility of Binary Mixtures of Lubricating Greases《润滑脂的二元混合物的相容性评估的标准实施规程》.pdf

    1、Designation: D6185 10Standard Practice forEvaluating Compatibility of Binary Mixtures of LubricatingGreases1This standard is issued under the fixed designation D6185; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last

    2、 revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers a protocol for evaluating thecompatibility of one or three binary mixtures of lubricatinggreases by c

    3、omparing their properties or performance relativeto those of the neat greases comprising the mixture.1.2 Three properties are evaluated in a primary testingprotocol using standard test methods: (1) dropping point byTest Method D566 (or Test Method D2265); (2) shear stabilityby Test Methods D217, 100

    4、 000stroke worked penetration;and (3) storage stability at elevated-temperature by change in60-stroke penetration (Test Method D217). For compatiblemixtures (those passing all primary testing), a secondary(nonmandatory) testing scheme is suggested when circum-stances indicate the need for additional

    5、 testing.1.3 Sequential or concurrent testing is continued until thefirst failure. If any mixture fails any of the primary tests, thegreases are incompatible. If all mixtures pass the three primarytests, the greases are considered compatible.1.4 This practice applies only to lubricating greases havi

    6、ngcharacteristics suitable for evaluation by the suggested testmethods. If the scope of a specific test method limits testing tothose greases within a specified range of properties, greasesoutside that range cannot be tested for compatibility by that testmethod. An exception to this would be when th

    7、e testedproperty of the neat, constituent greases is within the specifiedrange, but the tested property of a mixture is outside the rangebecause of incompatibility.1.5 This practice does not purport to cover all test methodsthat could be employed.1.6 The values stated in SI units are to be regarded

    8、asstandard. No other units of measurement are included in thisstandard.1.7 This standard does not purport to address all the safetyconcerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety andpractices and determine the applicabil

    9、ity of regulatory limita-tions prior to use. For specific safety information, see 7.2.3.2. Referenced Documents2.1 ASTM Standards:2D217 Test Methods for Cone Penetration of LubricatingGreaseD566 Test Method for Dropping Point of LubricatingGreaseD972 Test Method for Evaporation Loss of LubricatingGr

    10、eases and OilsD1092 Test Method for Measuring Apparent Viscosity ofLubricating GreasesD1263 Test Method for Leakage Tendencies of AutomotiveWheel Bearing Greases3D1264 Test Method for Determining the Water WashoutCharacteristics of Lubricating GreasesD1403 Test Methods for Cone Penetration of Lubric

    11、atingGrease Using One-Quarter and One-Half Scale ConeEquipmentD1478 Test Method for Low-Temperature Torque of BallBearing GreaseD1742 Test Method for Oil Separation from LubricatingGrease During StorageD1743 Test Method for Determining Corrosion PreventiveProperties of Lubricating GreasesD1831 Test

    12、Method for Roll Stability of Lubricating GreaseD2265 Test Method for Dropping Point of LubricatingGrease Over Wide Temperature RangeD2266 Test Method for Wear Preventive Characteristics ofLubricating Grease (Four-Ball Method)D2509 Test Method for Measurement of Load-CarryingCapacity of Lubricating G

    13、rease (Timken Method)D2595 Test Method for Evaporation Loss of LubricatingGreases Over Wide-Temperature RangeD2596 Test Method for Measurement of Extreme-PressureProperties of Lubricating Grease (Four-Ball Method)D3336 Test Method for Life of Lubricating Greases in BallBearings at Elevated Temperatu

    14、res1This practice is under the jurisdiction of ASTM Committee D02 on PetroleumProducts and Lubricants and is the direct responsibility of Subcommittee D02.G0.01on Chemical and General Laboratory Tests.Current edition approved July 1, 2010. Published July 2010. Originally approvedin 1997. Last previo

    15、us edition approved in 2008 as D618597(2008). DOI:10.1520/D6185-10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM we

    16、bsite.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.D3337 Test Method for Determining Life and Torque ofLubricating Greases in Small Bal

    17、l Bearings3D3527 Test Method for Life Performance of AutomotiveWheel Bearing GreaseD4049 Test Method for Determining the Resistance ofLubricating Grease to Water SprayD4170 Test Method for Fretting Wear Protection by Lubri-cating GreasesD4175 Terminology Relating to Petroleum, PetroleumProducts, and

    18、 LubricantsD4290 Test Method for Determining the Leakage Tenden-cies of Automotive Wheel Bearing Grease Under Acceler-ated ConditionsD4425 Test Method for Oil Separation from LubricatingGrease by Centrifuging (Koppers Method)D4693 Test Method for Low-Temperature Torque ofGrease-Lubricated Wheel Bear

    19、ingsD4950 Classification and Specification for Automotive Ser-vice GreasesD5706 Test Method for Determining Extreme PressureProperties of Lubricating Greases Using a High-Frequency, Linear-Oscillation (SRV) Test MachineD5707 Test Method for Measuring Friction and Wear Prop-erties of Lubricating Grea

    20、se Using a High-Frequency,Linear-Oscillation (SRV) Test Machine2.2 Federal Standard:Federal Test Method 3467.1 (Standard 791C), Storage Sta-bility of Lubricating Grease43. Terminology3.1 Definitions:3.1.1 bleed (bleeding), nof lubricating greases, the sepa-ration of a liquid lubricant from a lubrica

    21、ting grease for anycause.3.1.2 lubricant, nany material interposed between twosurfaces that reduces the friction or wear between them.D41753.1.3 lubricating grease, na semifluid to solid product ofa dispersion of a thickener in a liquid lubricant.3.1.3.1 DiscussionThe dispersion of the thickener for

    22、ms atwo-phase system and immobilizes the liquid lubricant bysurface tension and other physical forces. Other ingredientsimparting special properties are often included. D2173.1.4 spatulate, vto mix or blend by spreading and foldingwith a flat thin, usually metal, tool.3.1.5 syneresis, nof lubricatin

    23、g greases, the separation ofliquid lubricant from a lubricating grease due to shrinkage orrearrangement of the structure.3.1.5.1 DiscussionSyneresis is a form of bleeding causedby physical or chemical changes of the thickness. Separation offree oil or the formation of cracks that occur in lubricatin

    24、ggreases during storage in containers is most often due tosyneresis.3.1.6 thickener, nin a lubricating grease, a substancecomposed of finely divided particles dispersed in a liquidlubricant to form the products structure.3.1.6.1 DiscussionThe thickener can be fibers (such asvarious metallic soaps) o

    25、r plates or spheres (such as certainnon-stop thickeners) which are insoluble or, at most, only veryslightly soluble in the liquid lubricant. The general require-ments are that the solid particles be extremely small, uniformlydispersed, and capable of forming a relatively stable, gel-likestructure wi

    26、th the liquid lubricant. D2173.2 Definitions of Terms Specific to This Standard:3.2.1 compatibility, n of lubricating greases, the charac-teristic of lubricating greases to be mixed together withoutsignificant degradation of properties or performance.3.2.1.1 DiscussionWhen a mixture of two greases h

    27、asproperties or performance significantly inferior to both of theneat, constituent greases, then the two greases are incompat-ible. If the properties are inferior to those of one neat grease butnot inferior to those of the other, then such is not necessarilyconsidered an indication of incompatibilit

    28、y. To be consideredsignificantly inferior, the property of the mixture would beworse than the poorer of the two neat greases by an amountexceeding the repeatability of the test method used to evaluatethe property (see pass and fail). Incompatibility most often ismanifested by a degradation in physic

    29、al properties rather thanin chemical properties, although, occurrence of the latter is notunknown.3.2.2 borderline compatibility, nof lubricating greases,the characteristic of lubricating greases to be mixed togetherwith only slight degradation of properties or performance.3.2.2.1 DiscussionSlight d

    30、egradation means that theproperties or performance of the mixture is poorer than those ofthe two neat greases but by an amount less than the repeatabil-ity of the test method used to evaluate the property. (Seeborderline pass.)3.2.3 primary compatibility tests, nof lubricating greases,those test met

    31、hods employed first to evaluate compatibility.3.2.3.1 DiscussionThe test methods considered the mostsignificant in the evaluation of grease compatibility, insofar asthey provide the most information with the least expenditure oftesting resources, include tests for dropping point, consistency(usually

    32、 softening) after shearing conditions, and consistencychange after storage at elevated temperatures.3.2.4 secondary compatibility tests, nof lubricatinggreases, those test methods used to evaluate compatibilitywhen the primary compatibility tests are insufficient or incon-clusive.3.2.4.1 DiscussionS

    33、uch tests are driven by the criticalfeatures of a given application. For example, if the applicationsubjects the grease to water contamination, water washout orwater spray-off tests and, perhaps, corrosion tests would beused for additional evaluation. Secondary compatibility testsare suggested, but

    34、not required, by this practice.3.2.5 pass, nin compatibility testing of grease mixtures, atest result that is equal to or better than that of the poorer of thetwo constituent greases.3.2.6 borderline pass, n in compatibility testing of greasemixtures, a test result that is inferior to that of the po

    35、orer of thetwo constituent greases by an amount not exceeding therepeatability of the test method used for the evaluation.4Available from Standardization Documents Order Desk, Bldg. 4, Section D,700 Robbins Ave., Philadelphia, PA 191115094, Attn: NPODS.D6185 1023.2.6.1 DiscussionBorderline pass, bor

    36、derline fail, bor-derline compatible, and borderline incompatible are synony-mous terms.3.2.7 fail, nin compatibility testing of grease mixtures, atest result that is inferior to that of the poorer of the twoconstituent greases by an amount exceeding the repeatability ofthe test method used for the

    37、evaluation.3.2.8 50:50 mixture, na uniform blend of 50 mass % ofeach of two component greases.3.2.9 10:90 mixture, na uniform blend of 10 mass % ofone grease with 90 mass % of a second grease.3.2.10 90:10 mixture, na uniform blend of 90 mass % ofone grease with 10 mass % of a second grease.4. Summar

    38、y of Practice4.1 Option 1A 50:50 mixture of two greases to beevaluated for compatibility is prepared by spatulating. Thismixture and the two neat, constituent greases are tested usingthe primary compatibility tests (dropping point, 100 000-strokeworked penetration, and change in 60-stroke penetratio

    39、n due tohigh-temperature storage). Depending on the performance ofthe mixture, relative to those of the constituent greases, 10:90and 90:10 mixtures may need to be tested in addition. Alter-natively, Option 2 can be used. Instead of testing mixtures insequential order, 10:90 and 90:10 mixtures are t

    40、ested at thesame time the 50:50 mixture is evaluated. If all mixtures passthe primary compatibility tests, or if the application requiresthe evaluation of specific properties, secondary compatibilitytests can be employed for further evaluation. Such tests can berun concurrently, if desired.5. Signif

    41、icance and Use5.1 The compatibility of greases can be important for usersof grease-lubricated equipment. It is well known that themixing of two greases can produce a substance markedlyinferior to either of its constituent materials. One or more of thefollowing can occur. A mixture of incompatible gr

    42、eases mostoften softens, sometimes excessively. Occasionally, it canharden. In extreme cases, the thickener and liquid lubricant willcompletely separate. Bleeding can be so severe that the mixedgrease will run out of an operating bearing. Excessive syneresiscan occur, forming pools of liquid lubrica

    43、nt separated from thegrease. Dropping points can be reduced to the extent thatgrease or separated oil runs out of bearings at elevatedoperating temperatures. Such events can lead to catastrophiclubrication failures.5.1.1 Because of such occurrences, equipment manufactur-ers recommend completely clea

    44、ning the grease from equipmentbefore installing a different grease. Service recommendationsfor grease-lubricated equipment frequently specify the cave-atdo not mix greases under any circumstances. Despite thisadmonition, grease mixing will occur and, at times, cannot beavoided. In such instances, it

    45、 would be useful to know whetherthe mixing of two greases could lead to inadequate lubricationwith disastrous consequences. Equipment users most often donot have the resources to evaluate grease compatibility andmust rely on their suppliers. Mixing of greases is a highlyimprudent practice. Grease an

    46、d equipment manufacturers alikerecognize such practices will occur despite all warnings to thecontrary. Thus, both users and suppliers have a need to knowthe compatibility characteristics of the greases in question.5.2 There are two approaches to evaluating the compatibil-ity of grease mixtures. One

    47、 is to determine whether suchmixtures meet the same specification requirements as theconstituent components. This approach is not addressed by thispractice. Instead, this practice takes a specification-independent approach; it describes the evaluation of compat-ibility on a relative basis using spec

    48、ific test methods.5.2.1 Three test methods are used because fewer are notsufficiently definitive. For example, in one study, using100 000-stroke worked penetration for evaluation, 62 % of themixtures were judged to be compatible.5In a high-temperaturestorage stability study, covering a broader spect

    49、rum of greasetypes, only one-third of the mixtures were compatible.5Thesestudies used different criteria to judge compatibility.5.2.2 Compatibility cannot be predicted with certainty fromforeknowledge of grease composition. Generally, greases hav-ing the same or similar thickener types will be compatible.Uncommonly, even greases of the same type, although nor-mally compatible when mixed, can be incompatible because ofincompatible additive treatments. Thus, compatibility needs tobe judged on a case-by-case basis.5.3 Two constituent greases are blended in s


    注意事项

    本文(ASTM D6185-2010 1875 Standard Practice for Evaluating Compatibility of Binary Mixtures of Lubricating Greases《润滑脂的二元混合物的相容性评估的标准实施规程》.pdf)为本站会员(twoload295)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开