欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6121-2012a 2500 Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles《评定.pdf

    • 资源ID:521603       资源大小:256.01KB        全文页数:18页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6121-2012a 2500 Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles《评定.pdf

    1、Designation: D6121 12aStandard Test Method forEvaluation of Load-Carrying Capacity of Lubricants UnderConditions of Low Speed and High Torque Used for FinalHypoid Drive Axles1This standard is issued under the fixed designation D6121; the number immediately following the designation indicates the yea

    2、r oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method is commonly referred to as the L-37te

    3、st.2This test method covers a test procedure for evaluatingthe load-carrying, wear, and extreme pressure properties of agear lubricant in a hypoid axle under conditions of low-speed,high-torque operation.1.2 This test method also provides for the running of the lowaxle temperature (Canadian) L-37 te

    4、st. The procedure for thelow axle temperature (Canadian) L-37 test is identical to thestandard L-37 test with the exceptions of the items specificallylisted in Annex A6. The procedure modifications listed inAnnex A6 refer to the corresponding section of the standardL-37 test method.1.3 The values st

    5、ated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.3.1 ExceptionsIn Table A9.1, the values stated in SIunits are to be regarded as standard. Also, no S

    6、I unit isprovided where there is not a direct SI equivalent.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-b

    7、ility of regulatory limitations prior to use. Specific warninginformation is given in Sections 4 and 7.2. Referenced Documents2.1 ASTM Standards:3D235 Specification for Mineral Spirits (Petroleum Spirits)(Hydrocarbon Dry Cleaning Solvent)E29 Practice for Using Significant Digits in Test Data toDeter

    8、mine Conformance with Specifications2.2 Military Specification:4MIL-PRF-2105E Lubricating Oil, Gear, Multipurpose2.3 AGMA National Standard:5Nomenclature of Gear Tooth Failure Modes2.4 SAE Standard:6SAE J308 Information Report on Axle and Manual Trans-mission LubricantsSAE J2360 Lubricating Oil, Gea

    9、r Multipurpose (Metric)Military Use3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 abrasive wear, non ring and pinion gears, removalof material from the operating surface of the gear caused bylapping of mating surfaces by fine particles suspended inlubricant, fuel, or air or i

    10、mbedded in a surface. ASTM DistressRating Manual No. 2173.1.2 adhesive wear, non ring and pinion gears, removalof material from the operating surface of the gear caused byshearing of junctions formed between operating surfaces in1This test method is under the jurisdiction of ASTM Committee D02 onPet

    11、roleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.B0.03 on Automotive Gear Lubricants sheared-off particles either re-main affixed to the harder of the mating surfaces or act as wearparticles between the surfaces. ASTM Distress RatingManual No. 213.1.3 broken gear to

    12、oth, na gear tooth where a portion ofthe tooth face is missing and the missing material includessome part of the top land, toe, heel, or coast side of the tooth.3.1.3.1 DiscussionThis condition is distinct from andmore extensive than “chipping,” which is defined in 3.1.5.3.1.4 burnish, non ring and

    13、pinion gears, an alteration ofthe original manufactured surface to a dull or brightly polishedcondition. ASTM Distress Rating Manual No. 213.1.5 chipping, non ring and pinion gears, a conditioncaused in the manufacturing process in which a small irregularcavity is present only at the face/crown edge

    14、 interface. Theedge-chipping phenomenon occurs when sufficient fatiguecycles accumulate after tooth surface wear relieves the com-pressive residual stress on the tooth profile side of theprofile-to-topland interface. Chipping within 1 mm of theface/crown edge interface is to be called chipping, notp

    15、itting/spalling. ASTM Distress Rating Manual No. 213.1.6 corrosion, nin final drive axles, a general alterationof the finished surfaces of bearings or gears by discoloration,accompanied by roughening not attributable to mechanicalaction. ASTM Distress Rating Manual No. 213.1.7 deposits, nin final dr

    16、ive axles, material of pasty,gummy, or brittle nature adhering to or collecting around anyof the working parts. ASTM Distress Rating Manual No. 213.1.8 discoloration, non ring and pinion gears, any al-teration in the normal color of finished steel surfaces. ASTMDistress Rating Manual No. 213.1.9 pit

    17、ting, non ring and pinion gears, small irregularcavities in the tooth surface, resulting from the breaking out ofsmall areas of surface metal. ASTM Distress Rating ManualNo. 213.1.10 ridging, non ring and pinion gears, an alteration ofthe tooth surface to give a series of parallel raised and polishe

    18、dridges running diagonally in the direction of sliding motion,either partially or completely across the tooth surfaces of gears.ASTM Distress Rating Manual No. 213.1.11 rippling, non ring and pinion gears, an alterationof the tooth surface to give an appearance of a more or lessregular pattern resem

    19、bling ripples on water or fish scales.ASTM Distress Rating Manual No. 213.1.12 scoring, non ring and pinion gears, the rapidremoval of metal from the tooth surfaces caused by the tearingout of small contacting particles that have welded together asa result of metal-to-metal contact. The scored surfa

    20、ce ischaracterized by a matte or dull finish. ASTM Distress RatingManual No. 213.1.13 scratching, non ring and pinion gears, an altera-tion of the tooth surface in the form of irregular scratches, ofrandom length, across the tooth surface in the direction ofsliding of the surfaces. ASTM Distress Rat

    21、ing Manual No.213.1.14 spalling, non ring and pinion gears, the breakingout of flakes of irregular area of the tooth surface, a conditionmore extensive than pitting. ASTM Distress Rating ManualNo. 213.1.15 surface fatigue, non ring and pinion gears, thefailure of the ring gear and pinion material as

    22、 a result ofrepeated surface or subsurface stresses that are beyond theendurance limit of the material. It is characterized by theremoval of metal and the formation of cavities. AGMANational Standard3.1.16 wear, non ring and pinion gears, the removal ofmetal, without evidence of surface fatigue or a

    23、dhesive wear,resulting in partial or complete elimination of tool or grindingmarks or development of a discernible shoulder ridge at thebottom of the contact area near the root or at the toe or heel endof pinion tooth contact area (abrasive wear). ASTM DistressRating Manual No. 214. Summary of Test

    24、Method4.1 Prior to each test run, inspect the test unit (final axleassembly) and measure and record confirming manufacturingspecifications.4.2 Begin the test when the axle assembly is installed on thetest stand and charged with test lubricant.4.3 Gear Conditioning PhaseRun the charged test unit for1

    25、00 min at 440 wheel r/min and 395 lbf-ft (535 N-m) torqueper wheel, maintaining an axle sump temperature of 297F(147C). (WarningHigh-speed rotating equipment, electri-cal shock, high-temperature surfaces.)4.4 Gear Test PhaseNext, run the test unit for 24 h at 80wheel r/min, 1740 lbf-ft. (2359 N-m) t

    26、orque per wheel and anaxle sump temperature of 275F (135C). (WarningSee4.3.)4.5 The test is completed at the end of the gear test phase.Visually inspect the test parts.4.5.1 Remove the ring gear, pinion, and pinion bearing, andrate for various forms of distress. Use the condition of the ringgear and

    27、 pinion to evaluate the performance of the test oil.5. Significance and Use5.1 This test method measures a lubricants ability to protectfinal drive axles from abrasive wear, adhesive wear, plasticdeformation, and surface fatigue when subjected to low-speed,high-torque conditions. Lack of protection

    28、can lead to prema-ture gear or bearing failure, or both.5.2 This test method is used, or referred to, in the followingdocuments:5.2.1 American Petroleum Institute (API) Publication1560.85.2.2 STP-512A.95.2.3 SAE J308.8“Lubricant Service Designations for Automotive Manual Transmissions,Manual Transax

    29、les, and Axles,” available from American Petroleum Institute, 1220L St. NW, Washington, DC 20005.9“Laboratory Performance Tests for Automotive Gear Lubricants Intended forAPI GL-5 Service.”D6121 12a25.2.4 Military Specification MIL-PRF-2105E.5.2.5 SAE J2360.6. Apparatus6.1 Test UnitThe test unit is

    30、a new complete hypoid truckaxle assembly less axle shafts, Dana Model 60, 5.86 to 1ratio.10See Annex A6 for part numbers.6.2 Test Stand and Laboratory Equipment:6.2.1 Axle VentVent the axle to the atmosphere throughoutthe entire test and arrange the vent so that no water enters thehousing.6.2.2 Axle

    31、 CoverThe axle cover has a 3.5-in. (8.9-cm)inspection port installed, as shown in Fig. A2.1. This allowsfilling the axle and provides a means for inspecting the axleafter the gear condition phase (see 10.1). Install athermocouple, as described in 6.2.4.1.6.2.3 Test Stand ConfigurationMount the compl

    32、ete as-sembly in a rigid fixture as shown in Fig. A3.1. Mount the testunit in the test stand with pinion and axle shaft centerlineshorizontal.6.2.4 Temperature ControlThe test axle housing shallinclude a means of maintaining the lubricant at a specifiedtemperature. This shall include a thermocouple,

    33、 a temperaturerecording system, and a cooling method.6.2.4.1 ThermocoupleDetermine the thermocouple loca-tion on the rear cover using the cover plate temperature sensorlocating device as shown in Fig. A4.1.(1) Install the thermocouple such that the thermocoupletip is flush with the cover plate lip b

    34、y placing the cover plateface on a flat surface and inserting the thermocouple into thecover plate until the thermocouple tip is flush with the flatsurface.(2) Lock the thermocouple into place.6.2.4.2 Temperature Recording SystemThe temperaturerecording system shall record the temperature of the tes

    35、t oilthroughout the test.6.2.4.3 Axle CoolingUse three spray nozzles to distributewater over the cover plate and axle housing as shown in Fig.A5.1. Actuate the water control valve by the temperature PIDcontrol system. See A6.3.2.1 for L-37 Canadian Version test.(1) Spray nozzles11shall be any combin

    36、ation of the fol-lowing part numbers depending on how the system is plumbed:Straight Male NPT (Part No. 3/8GG-SS22), 90 Male NPT(Part No. 3/8GGA-SS22), Straight Female NPT (Part No.3/8G-SS22), and 90 Female NPT (Part No. 3/8GA-SS22).(2) Use a single control valve to control the cooling watersupply.

    37、The control shall be a12 in. (12.7 mm) two-way, Clinear trim, air to close, Research Control valve. Use a singlePID loop to maintain the axle lubricant temperature control forboth the Standard and Canadian version test. A separate PIDloop control for each version is not permitted. See A6.3.2.2 forL-

    38、37 Canadian Version test.(3) Use only38 or12 in. (9.5 or 12.7 mm) line material tothe spray nozzles.(4) Use a minimum supply water pressure of 25 psi (172kPa) to the control valve.(5) Use an axle box cover as shown in Fig. A5.2. Thepurpose is to contain water and eliminate drafts.(6) Use a locating

    39、pin or stop block as an indexing deviceto ensure that all subsequent axle installations are consistentlyinstalled perpendicular with the axle housing cover to engineand transmission driveshaft centerline.6.2.5 Power SourceThe power source consists of agasoline-powered V-8 engine capable of maintaini

    40、ng testconditions.6.2.6 Dynamometers and Torque Control SystemUse twoaxle dynamometers with sufficient torque absorbing capacity tomaintain axle torque and speed conditions. Suitable controlequipment with sensitivity of adjustment to permit mainte-nance of test conditions is required.6.2.7 Dynamomet

    41、er Connecting ShaftsFabricate shaftsconnecting the dynamometer to the axle shafts. Shafts shall bestrong enough to handle the torques encountered and shall bedynamically (spin) balanced.6.2.8 Drive Shaft and Universal JointsFabricate a shaftwith universal joints connecting the manual transmission an

    42、dtest axle. The shaft shall have a 4 6 0.2-in. (10.1 6 0.51-cm)outside diameter with a 0.095 6 0.005 in. (0.24 6 0.013 cm)wall thickness. Shaft and universal joints should be strongenough to handle the torques encountered and shall be dynami-cally (spin) balanced.6.2.9 Transmission and CouplingCoupl

    43、e the engine to thetest unit through a clutch and manual transmission of sufficienttorque carrying capacity to operate normally under test condi-tions.6.3 Speed Measuring and Control System, capable of mea-suring speed of both axles and also of maintaining testconditions.7. Reagents and Materials7.1

    44、 Sealing Compound, where necessary, Permatex No. 2,or equivalent.7.2 SolventUse only mineral spirits meeting the require-ments of Specification D235, Type II, Class C for AromaticContent (0-2% vol), Flash Point (142F/61C, min) and Color(not darker than +25 on Saybolt Scale or 25 on Pt-Co Scale).(War

    45、ningCombustible. Health hazard.) Obtain a Certificateof Analysis for each batch of solvent from the supplier.8. Preparation of Apparatus8.1 Cleaning of Reusable HardwareClean as necessary allreusable parts including axle shafts, thermocouples axle hous-ing cover, and all associated drain pans and fu

    46、nnels used for theaddition of and collection of test oil.8.2 Preparation of Axle:10The sole source of supply of the apparatus known to the committee at this timeis Dana Corp., P.O. Box 2424, Fort Wayne, IN 46801. If you are aware of alternativesuppliers, please provide this information to ASTM Inter

    47、national Headquarters.Your comments will receive careful consideration at a meeting of the responsibletechnical committee,1which you may attend.11The sole source of supply of the apparatus known to the committee at this timeis Spray Systems Company, and the spray nozzles can be purchased through E.I

    48、.Pfaff Company, 3443 Edwards Road, Suite D, Cincinnati, OH 45208. If you areaware of alternative suppliers, please provide this information to ASTM Interna-tional Headquarters. Your comments will receive careful consideration at a meetingof the responsible technical committee,1which you may attend.D

    49、6121 12a38.2.1 Record the “as received” drive side contact patternlength and flank values as noted on the axle housing from DanaCorp.10Length values of L2and L3and flank values of F1,F0,and F+1are considered acceptable. Any adjustments that aremade to the axle prior to testing shall be noted in the commentssection of the test report.Axle housings from prior gear batchesthat do not have contact pattern markings shall be patternedand reported by the test labs in the test report.8.2.2 Break and Turn Torque MeasurementsDetermineand record


    注意事项

    本文(ASTM D6121-2012a 2500 Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles《评定.pdf)为本站会员(figureissue185)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开