欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D6044-1996(2003) Standard Guide for Representative Sampling for Management of Waste and Contaminated Media《废物和污染媒介管理用代表性取样的标准指南》.pdf

    • 资源ID:521376       资源大小:121.35KB        全文页数:11页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D6044-1996(2003) Standard Guide for Representative Sampling for Management of Waste and Contaminated Media《废物和污染媒介管理用代表性取样的标准指南》.pdf

    1、Designation: D 6044 96 (Reapproved 2003)Standard Guide forRepresentative Sampling for Management of Waste andContaminated Media1This standard is issued under the fixed designation D 6044; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revis

    2、ion, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide covers the definition of representativeness inenvironmental sampling, identifies sources

    3、that can affectrepresentativeness (especially bias), and describes the at-tributes that a representative sample or a representative set ofsamples should possess. For convenience, the term“ represen-tative sample” is used in this guide to denote both a represen-tative sample and a representative set

    4、of samples, unlessotherwise qualified in the text.1.2 This guide outlines a process by which a representativesample may be obtained from a population. The purpose of therepresentative sample is to provide information about a statis-tical parameter(s) (such as mean) of the population regardingsome ch

    5、aracteristic(s) (such as concentration) of its constitu-ent(s) (such as lead). This process includes the followingstages: (1) minimization of sampling bias and optimization ofprecision while taking the physical samples, (2) minimizationof measurement bias and optimization of precision whenanalyzing

    6、the physical samples to obtain data, and (3) minimi-zation of statistical bias when making inference from thesample data to the population. While both bias and precisionare covered in this guide, major emphasis is given to biasreduction.1.3 This guide describes the attributes of a representativesamp

    7、le and presents a general methodology for obtainingrepresentative samples. It does not, however, provide specificor comprehensive sampling procedures. It is the users respon-sibility to ensure that proper and adequate procedures are used.1.4 The assessment of the representativeness of a sample isnot

    8、 covered in this guide since it is not possible to ever knowthe true value of the population.1.5 Since the purpose of each sampling event is unique, thisguide does not attempt to give a step by step account of how todevelop a sampling design that results in the collection ofrepresentative samples.1.

    9、6 Appendix X1 contains two case studies, which discussthe factors for obtaining representative samples.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and h

    10、ealth practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 3370 Practices for Sampling Water from Closed ConduitsD 4448 Guide for Sampling Groundwater Monitoring WellsD 4547 Practice for Sampling Waste and Soils for VolatileOr

    11、ganic CompoundsD 4700 Guide for Soil Sampling from the Vadose ZoneD 4823 Guide for Core Sampling Submerged, Unconsoli-dated SedimentsD 5088 Practice for Decontamination of Field EquipmentUsed at Nonradioactive Waste SitesD 5792 Practice for Generation of Environmental DataRelated to Waste Management

    12、 Activities: Development ofData Quality ObjectivesD 5956 Guide for Sampling Strategies for HeterogeneousWastesD 6051 Guide for Composite Sampling and Field Subsam-pling for Environmental Waste Management Activities3. Terminology3.1 analytical unit, nthe actual amount of the samplematerial analyzed i

    13、n the laboratory.3.2 bias, na systematic positive or negative deviation ofthe sample or estimated value from the true population value.3.2.1 DiscussionThis guide discusses three sources ofbiassampling bias, measurement bias, and statistical bias.There is a sampling bias when the value inherent in th

    14、ephysical samples is systematically different from what isinherent in the population.There is a measurement bias when the measurement processproduces a sample value systematically different from thatinherent in the sample itself, although the physical sample is1This guide is under the jurisdiction o

    15、f ASTM Committee D34 on WasteManagement and is the direct responsibility of Subcommittee D34.01.01 onPlanning for Sampling.Current edition approved March 10, 2003. Published June 2003. Originallyapproved in 1996. Last previous edition approved in 1996 as D 6044 96.2For referenced ASTM standards, vis

    16、it the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2

    17、959, United States.itself unbiased. Measurement bias can also include any sys-tematic difference between the original sample and the sampleanalyzed, when the analyzed sample may have been altereddue to improper procedures such as improper sample preser-vation or preparation, or both.There is a stati

    18、stical bias when, in the absence of samplingbias and measurement bias, the statistical procedure produces abiased estimate of the population value.Sampling bias is considered the most important factoraffecting inference from the samples to the population.3.3 biased sampling, nthe taking of a sample(

    19、s) with priorknowledge that the sampling result will be biased relative tothe true value of the population.3.3.1 DiscussionThis is the taking of a sample(s) basedon available information or knowledge, especially in terms ofvisible signs or knowledge of contamination. This kind ofsampling is used to

    20、detect the presence of localized contami-nation or to identify the source of a contamination. Thesampling results are not intended for generalization to theentire population. This is one form of authoritative sampling(see judgment sampling.)3.4 characteristic, na property of items in a sample orpopu

    21、lation that can be measured, counted, or otherwise ob-served, such as viscosity, flash point, or concentration.3.5 composite sample, na combination of two or moresamples.3.6 constituent, n an element, component, or ingredient ofthe population.3.6.1 DiscussionIf a population contains several contami-

    22、nants (such as acetone, lead, and chromium), these contami-nants are called the constituents of the population.3.7 Data Quality Objectives, DQOs, nqualitative andquantitative statements derived from a DQO process describingthe decision rules and the uncertainties of the decision(s)within the context

    23、 of the problem(s) (see Practice D 5792).3.8 Data Quality Objective Processa quality managementtool based on the Scientific Method and developed by the U.S.Environmental Protection Agency to facilitate the planning ofenvironmental data collection activities. The DQO processenables planners to focus

    24、their planning efforts by specifyingthe use of data (the decision), the decision criteria (actionlevel), and the decision makers acceptable decision error rates.The products of the DQO process are the DQOs (see PracticeD 5792).3.9 error, nthe random or systematic deviation of theobserved sample valu

    25、e from its true value (see bias andsampling error).3.10 heterogeneity, nthe condition or degree of the popu-lation under which all items of the population are not identicalwith respect to the characteristic(s) of interest.3.10.1 DiscussionAlthough the ultimate interest is in thestatistical parameter

    26、 such as the mean concentration of aconstituent of the population, heterogeneity relates to thepresence of differences in the characteristics (for example,concentration) of the units in the population. It is due to thepresence of fundamental heterogeneity (or fundamental error)3in the population tha

    27、t sampling variance arises. Degree ofsampling variance defines the degree of precision in estimatingthe population parameter using the sample data. The smallerthe sampling variance is, the more precise the estimate is. Seealso sampling error.3.11 homogeneity, n the condition of the population underw

    28、hich all items of the population are identical with respect tothe characteristic(s) of interest.3.12 judgment sampling, ntaking of a sample(s) based onjudgment that it will more or less represent the averagecondition of the population.3.12.1 DiscussionThe sampling location(s) is selectedbecause it i

    29、s judged to be representative of the averagecondition of the population. It can be effective when thepopulation is relatively homogeneous or when the professionaljudgment is good. It may or may not introduce bias. It is auseful sampling approach when precision is not a concern.Thisis one form of aut

    30、horitative sampling (see biased sampling.)3.13 population, nthe totality of items or units of mate-rials under consideration.3.14 representative sample, na sample collected in such amanner that it reflects one or more characteristics of interest (asdefined by the project objectives) of a population

    31、from whichit is collected.3.14.1 DiscussionA representative sample can be a singlesample, a collection of samples, or one or more compositesamples. A single sample can be representative only when thepopulation is highly homogeneous.3.15 representative sampling, nthe process of obtaining arepresentat

    32、ive sample or a representative set of samples.3.16 representative set of samples, na set of samples thatcollectively reflect one or more characteristics of interest of apopulation from which they were collected. See representativesample.3.17 sample, na portion of material that is taken fortesting or

    33、 for record purposes.3.17.1 DiscussionSample is a term with numerous mean-ings. The scientist collecting physical samples (for example,from a landfill, drum, or monitoring well) or analyzing samplesconsiders a sample to be that unit of the population that wascollected and placed in a container. A st

    34、atistician considers asample to be a subset of the population, and this subset mayconsist of one or more physical samples. To minimize confu-sion, the term sample, as used in this guide, is a reference toeither a physical sample held in a sample container, or thatportion of the population that is su

    35、bjected to in situ measure-ments, or a set of physical samples. See representative sample.3.17.1.1 The term sample size also means different things tothe scientist and the statistician.To avoid confusion, terms suchas sample mass/sample volume and number of samples areused instead of sample size.3Pi

    36、tard, F. F., “Pierre Gys Sampling Theory and Sampling Practice: Heteroge-neity, Sampling Correctness and Statistical Process Control,” 2nd ed., CRC PressPublishers, 1993.D 6044 96 (2003)23.18 sampling errorthe systematic and random deviationsof the sample value from that of the population. The syste

    37、maticerror is the sampling bias. The random error is the samplingvariance.3.18.1 DiscussionBefore the physical samples are taken,potential sampling variance comes from the inherent popula-tion heterogeneity (sometimes called the “fundamental error,”see heterogeneity). In the physical sampling stage,

    38、 additionalcontributors to sampling variance include random errors incollecting the samples.After the samples are collected, anothercontributor is the random error in the measurement process. Ineach of these stages, systematic errors can occur as well, butthey are the sources of bias, not sampling v

    39、ariance.3.18.1.1 Sampling variance is often used to refer to the totalvariance from the various sources.3.19 stratum, na subgroup of the population separated inspace or time, or both, from the remainder of the population,being internally similar with respect to a target characteristic ofinterest, an

    40、d different from adjacent strata of the population.3.19.1 DiscussionA landfill may display spatially sepa-rated strata, such as old cells containing different wastes thannew cells. A waste pipe may discharge into temporally sepa-rated strata of different constituents or concentrations, or both,if ni

    41、ght-shift production varies from the day shift. In this guide,strata refer mostly to the stratification in the concentrations ofthe same constituent(s).3.20 subsample, na portion of the original sample that istaken for testing or for record purposes.4. Significance and Use4.1 Representative samples

    42、are defined in the context of thestudy objectives.4.2 This guide defines the meaning of a representativesample, as well as the attributes the sample(s) needs to have inorder to provide a valid inference from the sample data to thepopulation.4.3 This guide also provides a process to identify thesourc

    43、es of error (both systematic and random) so that an effortcan be made to control or minimize these errors. These sourcesinclude sampling error, measurement error, and statistical bias.4.4 When the objective is limited to the taking of arepresentative (physical) sample or a representative set of(phys

    44、ical) samples, only potential sampling errors need to beconsidered. When the objective is to make an inference fromthe sample data to the population, additional measurementerror and statistical bias need to be considered.4.5 This guide does not apply to the cases where the takingof a nonrepresentati

    45、ve sample(s) is prescribed by the studyobjective. In that case, sampling approaches such as judgmentsampling or biased sampling can be taken. These approachesare not within the scope of this guide.4.6 Following this guide does not guarantee that represen-tative samples will be obtained. But failure

    46、to follow this guidewill likely result in obtaining sample data that are either biasedor imprecise, or both. Following this guide should increase thelevel of confidence in making the inference from the sampledata to the population.4.7 This guide can be used in conjunction with the DQOprocess (see Pr

    47、actice D 5792).4.8 This guide is intended for those who manage, design,and implement sampling and analytical plans for waste man-agement and contaminated media.5. Representative Samples5.1 Samples are taken to infer about some statistical param-eter(s) of the population regarding some characteristic

    48、(s) of itsconstituent(s) of interest. This is discussed in the followingsections.5.2 SamplesWhen a representative sample consists of asingle physical sample, it is a sample that by itself reflects thecharacteristics of interest of the population. On the other hand,when a representative sample consis

    49、ts of a set of physicalsamples, the samples collectively reflect some characteristicsof the population, though the samples individually may not berepresentative. In most cases, more than one physical sample isnecessary to characterize the population, because the popula-tion in environmental sampling is usually heterogeneous.5.3 Constituents and CharacteristicsA population canpossess many constituents, each with many characteristics.Usually it is only a subset of these constituents and character-istics that are of interest in the context of the state


    注意事项

    本文(ASTM D6044-1996(2003) Standard Guide for Representative Sampling for Management of Waste and Contaminated Media《废物和污染媒介管理用代表性取样的标准指南》.pdf)为本站会员(amazingpat195)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开