欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D5992-1996(2011) 9375 Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods《用振动法对硫化橡胶和与橡胶性质相近材料进行动态试验的标准指南》.pdf

    • 资源ID:521248       资源大小:398.53KB        全文页数:24页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D5992-1996(2011) 9375 Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods《用振动法对硫化橡胶和与橡胶性质相近材料进行动态试验的标准指南》.pdf

    1、Designation: D5992 96 (Reapproved 2011)Standard Guide forDynamic Testing of Vulcanized Rubber and Rubber-LikeMaterials Using Vibratory Methods1This standard is issued under the fixed designation D5992; the number immediately following the designation indicates the year oforiginal adoption or, in the

    2、 case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide covers dynamic testing of vulcanized rubberand rubber-like (both hereinafter

    3、 termed “rubber” or “elasto-meric”) materials and products, leading from the definitions ofterms used, through the basic mathematics and symbols, to themeasurement of stiffness and damping, and finally through theuse of specimen geometry and flexing method, to the measure-ment of dynamic modulus.1.2

    4、 This guide describes a variety of vibratory methods fordetermining dynamic properties, presenting them as options,not as requirements. The methods involve free resonant vibra-tion, and forced resonant and nonresonant vibration. In thelatter two cases the input is assumed to be sinusoidal.1.3 While

    5、the methods are primarily for the measurement ofmodulus, a material property, they may in many cases beapplied to measurements of the properties of full-scale prod-ucts.1.4 The methods described are primarily useful over therange of temperatures from 70C to +200C (100F to+400F) and for frequencies f

    6、rom 0.01 to 100 Hz. Not allinstruments and methods will accommodate the entire ranges.1.5 When employed for the measurement of dynamic modu-lus, the methods are intended for materials having complexmoduli in the range from 100 to 100 000 kPa (15 to 15 000 psi)and damping angles from 0 to 90. Not all

    7、 instruments andmethods will accommodate the entire ranges.1.6 Both translational and rotational methods are described.To simplify generic descriptions, the terminology of translationis used. The subject matter applies equally to the rotationalmode, substituting “torque” and “angular deflection” for

    8、“force” and “displacement.”1.7 This guide is divided into sections, some of whichinclude:SectionTerminology and Symbols 3Factors Influencing Dynamic Measurement 7Test Methods and Specimens 8Nonresonant Analysis Methods and Their Influence onResults9Report 10Mechanical and Instrumentation Factors Inf

    9、luencing DynamicMeasurementAnnex A1Guide to Further Reading Appendix X1Double-Shear SpecimensDerivation of Equations and De-scriptions of SpecimensAppendix X2Torsion SpecimensDerivation of Equations and Descrip-tions of SpecimensAppendix X3Compression/Tension SpecimensDerivation of Equationsand Desc

    10、riptions of SpecimensAppendix X4Free Resonant VibrationEquations for Log Decrement andStiffnessAppendix X5Obtaining Loss Factor and Elastic Stiffness from Transmissi-bility CurvesAppendix X61.8 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for i

    11、nformationonly.1.9 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

    12、2. Referenced Documents2.1 ASTM Standards:2D945 Test Methods for Rubber Properties in Compressionor Shear (Mechanical Oscillograph)D1566 Terminology Relating to Rubber2.2 ISO Document:3ISO 2856 ElastomersGeneral Requirements for DynamicTesting1This guide is under the jurisdiction of ASTM Committee D

    13、11 on Rubber andis the direct responsibility of Subcommittee D11.14 on Time and Temperature-Dependent Physical Properties.Current edition approved May 1, 2011. Published July 2011. Originally approvedin 1996. Last previous edition approved in 2006 as D5992 96 (2006)1. DOI:10.1520/D5992-96R11.2For re

    14、ferenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W.

    15、43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.2.3 DIN Document:4DIN 53 513 Determination of viscoelastic properties ofelastomers on exposure to forced vibration at non-reso

    16、nant frequencies3. Terminology3.1 DefinitionsThe following terms are listed in relatedgroups rather than alphabetically (see also TerminologyD1566).3.1.1 delta, d, nin the measurement of rubber properties,the symbol for the phase angle by which the dynamic forceleads the dynamic deflection; mathemat

    17、ically true only whenthe two dynamic waveforms are sine waves (Synonym lossangle).3.1.2 tandel, tand, nmathematical tangent of the phaseangle delta (d); pure numeric; often written spaced: tan del;often written using “delta”: tandelta, tan delta (Synonymlossfactor).3.1.3 phase angle, nin general, th

    18、e angle by which onesine wave leads another; units are either radians or degrees.3.1.4 loss angle, nsynonym for delta (d).3.1.5 loss factor, nsynonym for tandel (tand)(h).3.1.6 damping, nthat property of a material or system thatcauses it to convert mechanical energy to heat when subjectedto deflect

    19、ion; in rubber the property is caused by hysteresis; insome types of systems it is caused by friction or viscousbehavior.3.1.7 hysteresis, nthe phenomenon taking place withinrubber undergoing strain that causes conversion of mechanicalenergy to heat, and which, in the “rubbery” region of behavior(as

    20、 distinct from the glassy or transition regions), producesforces essentially independent of frequency. (See also hyster-etic and viscous.)3.1.8 hysteresis loss, nper cycle, the amount of mechani-cal energy converted to heat due to straining; mathematically,the area within the hysteresis loop, having

    21、 units of the productof force and length.3.1.9 hysteresis loop, nthe Lissajous figure, or closedcurve, formed by plotting dynamic force against dynamicdeflection for a complete cycle.3.1.10 hysteretic, adjas a modifier of damping, descrip-tive of that type of damping in which the damping force ispro

    22、portional to the amplitude of motion across the dampingelement.3.1.11 viscous, adjas a modifier of damping, descriptiveof that type of damping in which the damping force isproportional to the velocity of motion across the dampingelement, so named because of its derivation from an oil-filleddashpot d

    23、amper.3.1.12 equivalent viscous damping, c, nat a given fre-quency, the quotient of F9(1) divided by the velocity of theimposed deflection.c 5 F91! / vX*1! (1)3.1.12.1 DiscussionThe equivalent viscous damping isuseful when dealing with equations in many texts on vibration.It is an equivalent only at

    24、 the frequency for which it iscalculated.3.1.13 dynamic, adjin testing, descriptive of a force ordeflection function characterized by an oscillatory or transientcondition, as contrasted to a static test.3.1.14 dynamic, adjas a modifier of stiffness or modulus,descriptive of the property measured in

    25、a test employing anoscillatory force or motion, usually sinusoidal.3.1.15 static, adj (1)in testing, descriptive of a test inwhich force or deflection is caused to change at a slow constantrate, within or in imitation of tests performed in screw-operateduniversal test machines.3.1.16 static, adj (2)

    26、in testing, descriptive of a test inwhich force or deflection is applied and then is truly unchang-ing over the duration of the test, often as the mean value of adynamic test condition.3.1.17 static, adj (3)as a modifier of stiffness or modulus,descriptive of the property measured in a test performe

    27、d at aslow constant rate.3.1.18 stiffness, nthat property of a specimen that deter-mines the force with which it resists deflection, or the deflec-tion with which it responds to an applied force; may be staticor dynamic (See also complex, elastic, damping.) (Synonymspring rate).3.1.19 modulus, nthe

    28、ratio of stress to strain; that propertyof a material which, together with the geometry of a specimen,determines the stiffness of the specimen; may be static ordynamic, and if dynamic, is mathematically a vector quantity,the phase of which is determined by the phase of the complexforce relative to t

    29、hat of deflection. (See also complex, elastic,damping.)3.1.20 complex, adjas a modifier of dynamic force, de-scriptive of the total force; denoted by the asterisk (*) as asuperscript symbol (F*); F* can be resolved into elastic anddamping components using the phase of displacement asreference.3.1.21

    30、 elastic, adjas a modifier of dynamic force, descrip-tive of that component of complex force in phase with dynamicdeflection, that does not convert mechanical energy to heat, andthat can return energy to an oscillating mass-spring system;denoted by the single prime (8) as a superscript symbol, as F8

    31、.3.1.22 damping, adjas a modifier of dynamic force, de-scriptive of that component of complex force leading dynamicdeflection by 90 degrees, and that is responsible for theconversion of mechanical energy to heat; denoted by thedouble prime (9) as a superscript symbol, as F9.3.1.23 storage, adjas a m

    32、odifier of energy, descriptive ofthat component of energy absorbed by a strained elastomer thatis not converted to heat and is available for return to the overallmechanical system; by extension, descriptive of that compo-nent of modulus or stiffness that is elastic.3.1.24 Fourier analysis, nin mathe

    33、matics, analysis of aperiodic time varying function that produces an infinite seriesof sines and cosines consisting of a fundamental and integer4Available from Beuth Verlag GmbH (DIN- DIN Deutsches Institut furNormung e.V.), Burggrafenstrasse 6, 10787, Berlin, Germany, http:/www.en.din.de.D5992 96 (

    34、2011)2harmonics which, if added together, would recreate the originalfunction; named after the French mathematician Joseph Fou-rier, 17681830.3.1.25 shear, adjdescriptive of properties measured usinga specimen deformed in shear, for example, shear modulus.3.1.26 bonded, adjin describing a test speci

    35、men, one inwhich the elastomer to be tested is permanently cemented tomembers of much higher modulus for two purposes: (1)toprovide convenient rigid attachment to the test machine, and(2) to define known areas for the application of forces to theelastomer.3.1.27 unbonded, adjin describing a test spe

    36、cimen, one inwhich the elastomer is molded or cut to shape, but thatotherwise demands that forces be applied directly to theelastomer.3.1.28 bond area, nin describing a bonded test specimen,the cemented area between elastomer and high-modulus attach-ment member.3.1.29 contact area, nin an unbonded s

    37、pecimen, that areain contact with a high-modulus fixture, and through whichapplied forces pass; may or may not be constant, and iflubricated, may deliberately be allowed to change.3.1.30 lubricated, adjin describing an elastomeric testspecimen having at least two plane parallel faces and to betested

    38、 in compression, one in which the plane parallel faces areseparated from plane parallel platens of the apparatus by alubricant, thereby eliminating, insofar as possible, frictionbetween the elastomer and platens, permitting the contactsurfaces of the specimen to expand in area as the platens aremove

    39、d closer together.3.1.31 Mullins Effect, nthe phenomenon occurring invulcanized rubber whereby the second and succeeding hyster-esis loops exhibit less area than the first, due to breaking ofphysical cross-links; may be permanent or temporary, depend-ing on the nature of the material. (See also pref

    40、lex effect.)3.1.32 preflex effect, nthe phenomenon occurring in vul-canized rubber, related to the Mullins effect, whereby thedynamic moduli at low strain amplitude are less after a historyto high strains than before. (See also Mullins effect.) (Alsocalled strain history effect.)3.1.33 undamped natu

    41、ral frequency, nin a single-degree-of-freedom resonant spring-mass-damper system, that naturalfrequency calculated using the following equation:fn5 SQRT K8/M! (2)where:K8 = the elastic stiffness of the spring, andM = the mass.3.1.34 transmissibility, nin the measurement of forcedresonant vibration,

    42、the complex quotient of response dividedby input; may be absolute or relative.3.1.35 absolute, adjin the measurement of vibration,aquantity measured relative to the earth as reference.3.1.36 relative, adjin the measurement of vibration,aquantity measured relative to another body as reference.3.1.37

    43、LVDT, nabbreviation for “Linear Variable Differ-ential Transformer,” a type of displacement transducer charac-terized by having a primary and two secondary coils arrangedalong a common axis, the primary being in the center, and amovable magnetic core free to move along the axis that inducesa signal

    44、proportional to the distance from the center of itstravel, and of a polarity determined by the phase of the signalsfrom the two secondary coils. The rotary version is called aRotary Variable Differential Transformer (RVDT).3.1.38 mobility analysis, nthe science of analysis ofmechanical systems emplo

    45、ying a vector quantity called “mo-bility,” characteristic of lumped constant mechanical elements(mass, stiffness, damping), and equal in magnitude to the forcethrough the element divided by the velocity across the element.3.1.39 impedance analysis, nthe science of analysis ofmechanical systems emplo

    46、ying a vector quantity called “im-pedance,” characteristic of lumped constant mechanical ele-ments (mass, stiffness, damping), and equal in magnitude to thevelocity across the element divided by the force through theelement.3.1.39.1 DiscussionMobility analysis is sometimes easierto employ than imped

    47、ance because mechanical circuit dia-grams are more intuitively constructed in the mobility system.Either will provide the understanding necessary in analyzingtest apparatus.3.2 Symbols:3.2.1 General Comments:3.2.1.1 Many symbols use parentheses. The (t) denotes afunction of time. When enclosing a nu

    48、mber, such as (1) or (2),the reference is to the number or “order” of the harmonicobtained through Fourier analysis (seeAppendix X2). Thus, allof the parameters indicated as (1) are obtained from thefundamental, or first, harmonic. A second harmonic from thecomplex force would be denoted as F*(2), e

    49、tc. It should benoted that each harmonic has a phase angle associated with it.In the case of the fundamental, it is the loss angle (d). Thephase angles become important for the higher harmonics if thereverse Fourier transform is employed to reconstitute data inthe time domain.3.2.1.2 Three superscripts are used: the asterisk (*), thesingle prime (8), and the double prime (9). This guide discussesdynamic motion and force. As raw data, each is a “complex”parameter, denoted by the asterisk. In this guide force isreference


    注意事项

    本文(ASTM D5992-1996(2011) 9375 Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods《用振动法对硫化橡胶和与橡胶性质相近材料进行动态试验的标准指南》.pdf)为本站会员(arrownail386)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开