欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D5806-1995(2017) 0788 Standard Test Method for Disinfectant Quaternary Ammonium Salts by Potentiometric Titration《用电位滴定法测定消毒剂季铵盐的标准试验方法》.pdf

    • 资源ID:520761       资源大小:105.47KB        全文页数:4页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D5806-1995(2017) 0788 Standard Test Method for Disinfectant Quaternary Ammonium Salts by Potentiometric Titration《用电位滴定法测定消毒剂季铵盐的标准试验方法》.pdf

    1、Designation: D5806 95 (Reapproved 2017)Standard Test Method forDisinfectant Quaternary Ammonium Salts by PotentiometricTitration1This standard is issued under the fixed designation D5806; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revis

    2、ion, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a potentiometric titration pro-cedure for determining active matter in disinf

    3、ectant quaternaryammonium salts. This test method is intended for the analysisof quaternary ammonium salts used as disinfectants, and onlyapplies to the following commonly used quaternary ammoniumsalts: n-alkyldimethylbenzylammonium chloride (see Fig. 1),cetyltrimethylammonium chloride, and a blend

    4、of n-octyldecyldimethylammonium chloride, di-n-octyl dimethylammoniumchloride, and di-n-decyldimethyl ammonium chloride (see Fig.2). Also, this test method can be applied to the analysis ofdisinfectant type products where the formula ingredients areknown and the quaternary ammonium salt is one of th

    5、e above.Interferences such as amines oxides and betaines present indisinfectant formulations were not tested.1.2 This disinfectant quaternary ammonium salt conformsto the structures in Fig. 1 and Fig. 2.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement ar

    6、e included in thisstandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations p

    7、rior to use. For specificprecautionary information, see Section 8.2. Referenced Documents2.1 ASTM Standards:2D459 Terminology Relating to Soaps and Other DetergentsD1193 Specification for Reagent WaterD1681 Test Method for Synthetic Anionic Active Ingredientin Detergents by Cationic Titration Proced

    8、ureD3049 Test Method for Synthetic Anionic Ingredient byCationic TitrationE180 Practice for Determining the Precision of ASTMMethods for Analysis and Testing of Industrial and Spe-cialty Chemicals (Withdrawn 2009)33. Terminology3.1 DefinitionsSee Terminology D459.4. Summary of Test Method4.1 Disinfe

    9、ctant type quaternary ammonium compoundspresent, as the active materials in disinfectant type products aretitrated potentiometrically in an aqueous medium with astandard solution of sodium lauryl sulphate using a nitrateion-selective electrode or a surfactant electrode (see also TestMethod D1681). I

    10、n this potentiometric titration, the reactioninvolves the formation of a complex between the disinfectantquaternary ammonium compound and the anionic surfactantwhich then precipitates. At the end point, the nitrate ionelectrode or surfactant electrode appears to respond to anexcess of titrant with a

    11、 potential change large enough to give awell defined inflection in the titration curve.5. Significance and Use5.1 This test method is used to determine the percent activesin each type of the disinfectant quaternary ammonium salts,1This test method is under the jurisdiction of ASTM Committee D12 on S

    12、oapsand Other Detergents and is the direct responsibility of Subcommittee D12.12 onAnalysis and Specifications of Soaps, Synthetics, Detergents and their Components.Current edition approved Jan. 1, 2017. Published February 2017. Originallyapproved in 1995. Last previous edition approved in 2009 as D

    13、5806-95(2009). DOI:10.1520/D5806-95R17.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved ver

    14、sion of this historical standard is referenced onwww.astm.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization establi

    15、shed in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1and also in the disinfectant products. Quaternary ammoniumcompounds being the active ingredients in disinfe

    16、ctant-typeproducts require accurate determination to assess the cost andantimicrobial performance of such products.6. Apparatus6.1 Autotitration System,4with 10-mL buret capacity, or20-mL buret capacity, magnetic stirrer,5evaluating ruler,6titroprocessor7with 10-mL buret capacity or equivalent auto-

    17、titration system.6.2 Nitrate Specific Ion Electrode,8or surfactant electrode,9or equivalent. Silver/silver chloride reference electrode.106.3 Metrohm Coaxial Adaptor, required for indicator elec-trode.11Banana plug adaptor, required for reference electrode.NOTE 1To ensure electrical continuity (afte

    18、r assembly), shake downelectrode in the manner of a clinical thermometer. Also, the conditioningof the electrode is essential for obtaining a good break in the titrationcurve. Conditioning new electrodes in 0.004 M sodium lauryl sulfate,aqueous solution for 60 min (or more) prior to use is recommend

    19、ed. Alsoapplies to the nitrate or surfactant electrode.NOTE 2Other electrodes (for example, calomel electrodes) are suit-able as the reference electrode provided they give a stable referencepotential during the titration. Reference electrodes having a ceramic or anasbestos junction tend to clog with

    20、 use. Therefore, a ground-glass sleeveelectrode12is suggested.7. Reagents7.1 Sodium Lauryl Sulfate,13primary standard (see Note 3).7.2 Standardize with Hyamine 1622, dried previously at105C for 1 h.NOTE 3Sodium lauryl sulfate must be analyzed for purity accordingto the Reagent section of Test Method

    21、 D3049 before using as a primarystandard.7.3 Water, Type III, reagent water conforming to Specifica-tion D1193.7.4 Isopropanol, reagent grade. (WarningHighly flam-mable.)7.5 Sodium Borate Decahydrate, (Na2B4O710H2O), re-agent grade.7.6 Boric Acid, (H3BO3), reagent grade. (WarningCauses irritation.)7

    22、.7 Sodium Hydroxide, (NaOH), reagent grade.(WarningCauses severe burns on contact with skin.)7.8 Sodium Hydroxide, 2N SolutionDissolve 40 g ofsodium hydroxide in approximately 300 mLof deionized waterwith stirring. Transfer to a 500-mL volumetric flask, dilute tovolume with deionized water, and mix

    23、well.7.9 Borate Buffer SolutionDissolve 1.5 g Na2B4O710H2O and 1.0 g H3BO3in approximately 200 mL deionizedwater, with stirring; adjust pH to 9.5 with 2N HaOH, transferto a 1000-mL volumetric flask, mix and dilute to volume withdeionized water.7.10 Octoxynol-9 Nonionic Surfactant.147.11 Triton Solut

    24、ion, 1 %Pipet 1 mL of the octoxynol-9nonionic surfactant and transfer to a 100-mL volumetric flaskdiluted to volume with deionized water.4Metrohm-Brinkmann E-536, or equivalent, has been found satisfactory. Avail-able from Brinkmann Instruments Inc., Cantiague Rd., Westbury, NY 11590.5Potentiograph/

    25、E-535 and Dosimat/E-459, or equivalent, have been foundsatisfactory. Available from Brinkmann Instruments Inc.6Evaluating Ruler EA-893, or equivalent, has been found satisfactory. Availablefrom Brinkmann Instruments Inc.7Metrohm-Brinkmann Titroprocessor 670 has been found satisfactory.Availablefrom

    26、Brinkmann Instruments Inc.8Orion Model 93.07, or equivalent, has been found satisfactory. Available fromOrion Research Inc., 529 Main St., Boston, MA 02129.9Orion Model 93.42, or equivalent, has been found satisfactory. Available fromOrion Research Inc.10Metrohm Model EA-440, or equivalent, has been

    27、 found satisfactory.Availablefrom Brinkmann Instruments Inc.11The Metrohm coaxial adaptor, or equivalent, has been found satisfactory forthis purpose. Available from Brinkmann Instruments Inc.12The Metrohm WA-440, or equivalent, has been found satisfactory. Availablefrom Brinkmann Instruments Inc.13

    28、Available from British Drug House, LTD, or in the U.S.A. from GallardSchlesinger Chemical Manufacturing Corp., 584 Mineola Ave., Carle Place, NY11514.14Triton-X-100 has been found satisfactory.Available from Fisher Scientific Cat.#BP151-100.where:X= chloride, andR = aliphatic, normal C8C22.FIG. 1 n-

    29、alkyldimethylbenzylammonium chloride and n-alkyldimethylethylbenzylammonium chloridewhere:X= chloride, andR = aliphatic, normal C8C22.FIG. 2 Dialkyldimethyl quaternariesD5806 95 (2017)27.12 Sodium Lauryl Sulfate Solution, 8 103NWeighaccurately 2.42 6 0.01 g of sodium lauryl sulfate to nearest 0.1mg;

    30、 dissolve in water and dilute to a final volume of 1 L.Determine the normality of the solution with the followingequation:Normality of sodium lauryl sulfate 5W 3P288.38!100!(1)where:P = purity of the sodium lauryl sulfate, weight %, andW = weight of sodium lauryl sulfate, g.Keep the solution no long

    31、er than 1 month before making afresh solution.8. Hazards8.1 Handle all reagents and chemicals with care. Beforeusing any chemical, read and follow all safety precautions andinstructions of the manufacturer label or MSDS (MaterialSafety Data Sheet).9. Procedure for Determination of DisinfectantQuater

    32、nary Ammonium Salt or Disinfectant TypeProduct9.1 Weigh accurately a quantity of sample to contain ap-proximately 0.056 meq/10 mL of disinfectant quaternaryammonium compound active material into a 200-mL volumet-ric flask (Note 4). Dilute to volume with deionized water. Mixwell. Pipet the correspond

    33、ing aliquot, then add approximately150 mL of water and stir. While stirring, pipet in 10 mL of theborate buffer solution, 2 mL of isopropanol, and 2 mL of 1 %octoxynol-9 nonionic surfactant. Titrate potentiometricallywith standard sodium lauryl sulfate solution. As the inflectionpoint is approached,

    34、 reduce the addition rate and continuetitrating well past the inflection in the titration curve. (Auto-matic titrators can be preset to automatically slow down theaddition rate as the inflection point is approached.)NOTE 4To determine the amount of sample needed for an approxi-mately 5 to 7 mL titra

    35、tion of 0.0056 meq use the following equation:W 50.0056 3MD(2)where:W = weight of sample to be taken for analysis, g,M = average molecular weight of the anionic active matter present,andD = approximate concentration of anionic active matter expected,weight %.9.2 To obtain accurate sample weights of

    36、sample, it isconvenient to dissolve the disinfectant quaternary ammoniumcompound in deionized water and take an aliquot correspond-ing to a known meq of active matter. For example, for adisinfectant quaternary ammonium compound containing28.0 % actives molecular weight 335, weigh 1.3 of sample intoa

    37、 200-mLvolumetric flask, dilute with water, and take a 10-mLaliquot.Add 150 mL of water, 10 mL of borate buffer solution,2 mL of 1 % Triton solution, and 2 mL of isopropanol. Titratewith the standard 0.008 N solution of sodium lauryl sulfate.9.3 Record the titration volume at the end point. Theendpo

    38、int is marked by the point of inflection on “S” shapedcurve and it is determined by the use of metrohm evaluatingruler. A typical titration curve of a disinfectant quaternaryammonium compound is shown in Fig. 3.10. Calculation10.1 Calculate the percent actives in the sample as follows:Disinfectant q

    39、uaternary ammonium compound weight %5 (3)A 3N 3M 3D 3100S 31000 3A1where:A = standard sodium lauryl sulphate solution consumedduring titration, mL,N = normality of standard sodium lauryl sulfate solution,M = average equivalent weight of the disinfectant quater-nary ammonium compound,S = weight of sa

    40、mple, g,D = initial sample dilution, mL (that is, 200 mL), andA1= aliquot taken for titration (that is, 10 mL).11. Precision and Bias11.1 Repeatability (Single Analyst)The standard deviationof results (each the average of duplicates), obtained by thesame analyst on differed days, has been estimated

    41、to be 0.25 %absolute at 23 df. Two such averages should be consideredsuspect (95 % confidence level) if they differ by more than0.80 % absolute. (See Practice E180.)11.2 Reproducibility (Multilaboratory):11.2.1 n-Alkyldimethylbenzylammonium ChlorideThestandard deviation of results (each the average

    42、of duplicates),obtained by analysts in different laboratories, has been esti-mated to be 0.24 % absolute at 23 df. Two such averagesshould be considered suspect (95 % confidence level) if theydiffer by more than 0.8 % absolute.11.2.2 Cetyltrimethylammonium ChlorideThe standarddeviation of results (e

    43、ach the average of duplicates), obtainedby analysts in different laboratories, has been estimated to be0.38 % absolute at 23 df. Two such averages should beconsidered suspect (95 % confidence level) if they differ bymore than 1.4 % absolute.11.2.3 Blend of n-octyldecyldimethylammonium Chloride,Di-n-

    44、decyldimethyl Ammonium Chloride and Di-n-decyldimethylammonium ChlorideThe standard deviation ofresults (each the average of duplicates), obtained by analysts indifferent laboratories, has been estimated to be 1.9 % absoluteat 23 df. Two such averages should be considered suspect(95 % confidence lev

    45、el) if they differ by more than 4.4 %absolute.NOTE 5The precision data were derived from results of the coopera-tive tests by six laboratories on the following disinfectant quaternaryammonium salts: (equivalent weights in parentheses are based on com-mercial disinfectant quaternary ammonium salts)n-

    46、octyldecyldimethylammonium chloride, di-n-octyldimethylammoniumchloride, and di-n-decyldimethylammonium chloride (335),n-alkyldimethylbenzylammonium chloride (358), cetyltrimethylammo-nium chloride (320).D5806 95 (2017)3ASTM International takes no position respecting the validity of any patent right

    47、s asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any t

    48、ime by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will

    49、 receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555


    注意事项

    本文(ASTM D5806-1995(2017) 0788 Standard Test Method for Disinfectant Quaternary Ammonium Salts by Potentiometric Titration《用电位滴定法测定消毒剂季铵盐的标准试验方法》.pdf)为本站会员(medalangle361)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开