欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D5528-2001(2007)e1 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.pdf

    • 资源ID:520033       资源大小:177.60KB        全文页数:12页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D5528-2001(2007)e1 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.pdf

    1、Designation: D 5528 01 (Reapproved 2007)e1Standard Test Method forMode I Interlaminar Fracture Toughness of UnidirectionalFiber-Reinforced Polymer Matrix Composites1This standard is issued under the fixed designation D 5528; the number immediately following the designation indicates the year oforigi

    2、nal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.e1NOTEAdded research report reference to Section 14 editorially in March 20

    3、08.1. Scope1.1 This test method describes the determination of theopening Mode I interlaminar fracture toughness, GIc, of con-tinuous fiber-reinforced composite materials using the doublecantilever beam (DCB) specimen (Fig. 1).1.2 This test method is limited to use with compositesconsisting of unidi

    4、rectional carbon fiber and glass fiber tapelaminates with brittle and tough single-phase polymer matri-ces. This limited scope reflects the experience gained inround-robin testing. This test method may prove useful forother types and classes of composite materials; however,certain interferences have

    5、 been noted (see 6.5).1.3 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.4 This standard may involve hazardous materials, opera-tions, and equipment.1.5 This standard does not purport to address all of thesafety concerns, if

    6、 any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 883 Terminology Relating to PlasticsD 2651 Gu

    7、ide for Preparation of Metal Surfaces for Adhe-sive BondingD 2734 Test Methods for Void Content of Reinforced Plas-ticsD 3171 Test Methods for Constituent Content of CompositeMaterialsD 3878 Terminology for Composite MaterialsD 5229/D 5229M Test Method for Moisture AbsorptionProperties and Equilibri

    8、um Conditioning of Polymer Ma-trix Composite MaterialsE4 Practices for Force Verification of Testing MachinesE6 Terminology Relating to Methods of Mechanical Test-ingE 122 Practice for Calculating Sample Size to Estimate,With Specified Precision, the Average for a Characteristicof a Lot or ProcessE

    9、177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE 456 Terminology Relating to Quality and StatisticsE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 Terminology D 3878 defines terms relating to high-modulus fib

    10、ers and their composites. Terminology D 883defines terms relating to plastics. Terminology E6 definesterms relating to mechanical testing. Terminology E 456 andPractice E 177 define terms relating to statistics. In the event ofconflict between terms, Terminology D 3878 shall have prece-dence over th

    11、e other terminology standards.3.2 Definitions of Terms Specific to This Standard:3.2.1 crack opening mode (Mode I)fracture mode inwhich the delamination faces open away from each other.3.2.2 Mode I interlaminar fracture toughness, GIcthecritical value of G for delamination growth as a result of anop

    12、ening load or displacement.3.2.3 energy release rate, Gthe loss of energy, dU, in thetest specimen per unit of specimen width for an infinitesimal1This test method is under the jurisdiction of ASTM Committee D30 onComposite Materials and is the direct responsibility of Subcommittee D30.06 onInterlam

    13、inar Properties.Current edition approved May 1, 2007. Published June 2007. Originallyapproved in 1994. Last previous edition approved in 2001 as D 5528 01.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTM

    14、Standards volume information, refer to the standards Document Summary page onthe ASTM website.(a) with piano hinges (b) with loading blocksFIG. 1 Double Cantilever Beam Specimen1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.increase

    15、 in delamination length, da, for a delamination growingunder a constant displacement. In mathematical form,G 521bdUda(1)where:U = total elastic energy in the test specimen,b = specimen width, anda = delamination length.3.3 Symbols:3.3.1 A1slope of plot of a/b versus C1/3.3.3.2 adelamination length.3

    16、.3.3 a0initial delamination length.3.3.4 bwidth of DCB specimen.3.3.5 Ccompliance, d/P, of DCB specimen.3.3.6 CVcoefficient of variation, %.3.3.7 dadifferential increase in delamination length.3.3.8 dUdifferential increase in strain energy.3.3.9 E11modulus of elasticity in the fiber direction.3.3.10

    17、 E1fmodulus of elasticity in the fiber directionmeasured in flexure.3.3.11 Flarge displacement correction factor.3.3.12 Gstrain energy release rate.3.3.13 GIcopening Mode I interlaminar fracture tough-ness.3.3.14 hthickness of DCB specimen.3.3.15 Llength of DCB specimen.3.3.16 L8half width of loadin

    18、g block.3.3.17 mnumber of plies in DCB specimen.3.3.18 Nloading block correction factor.3.3.19 NLpoint at which the load versus opening dis-placement curve becomes nonlinear.3.3.20 nslope of plot of Log C versus Log a.3.3.21 Papplied load.3.3.22 Pmaxmaximum applied load during DCB test.3.3.23 SDstan

    19、dard deviation.3.3.24 tdistance from loading block pin to center line oftop specimen arm.3.3.25 Ustrain energy.3.3.26 VISpoint at which delamination is observed visu-ally on specimen edge.3.3.27 Vffiber volume fraction, %.3.3.28 dload point deflection.3.3.29 Deffective delamination extension to corr

    20、ect forrotation of DCB arms at delamination front.3.3.30 Dxincremental change in Log a.3.3.31 Dyincremental change in Log C.4. Summary of Test Method4.1 The DCB shown in Fig. 1 consists of a rectangular,uniform thickness, unidirectional laminated composite speci-men containing a nonadhesive insert o

    21、n the midplane thatserves as a delamination initiator. Opening forces are applied tothe DCB specimen by means of hinges (Fig. 1a) or loadingblocks (Fig. 1b) bonded to one end of the specimen. The endsof the DCB are opened by controlling either the openingdisplacement or the crosshead movement, while

    22、 the load anddelamination length are recorded.4.2 A record of the applied load versus opening displace-ment is recorded on an X-Y recorder, or equivalent real-timeplotting device or stored digitally and postprocessed. Instanta-neous delamination front locations are marked on the chart atintervals of

    23、 delamination growth. The Mode I interlaminarfracture toughness is calculated using a modified beam theoryor compliance calibration method.5. Significance and Use5.1 Susceptibility to delamination is one of the majorweaknesses of many advanced laminated composite structures.Knowledge of a laminated

    24、composite materials resistance tointerlaminar fracture is useful for product development andmaterial selection. Furthermore, a measurement of the Mode Iinterlaminar fracture toughness, independent of specimen ge-ometry or method of load introduction, is useful for establish-ing design allowables use

    25、d in damage tolerance analyses ofcomposite structures made from these materials.5.2 This test method can serve the following purposes:5.2.1 To establish quantitatively the effect of fiber surfacetreatment, local variations in fiber volume fraction, and pro-cessing and environmental variables on GIco

    26、f a particularcomposite material.5.2.2 To compare quantitatively the relative values of GIcfor composite materials with different constituents.5.2.3 To develop delamination failure criteria for compositedamage tolerance and durability analyses.6. Interferences6.1 Linear elastic behavior is assumed i

    27、n the calculation ofG used in this test method. This assumption is valid when thezone of damage or nonlinear deformation at the delaminationfront, or both, is small relative to the smallest specimendimension, which is typically the specimen thickness for theDCB test.6.2 In the DCB test, as the delam

    28、ination grows from theinsert, a resistance-type fracture behavior typically developswhere the calculated GIcfirst increases monotonically, and thenstabilizes with further delamination growth. In this test method,a resistance curve (R curve) depicting GIcas a function ofdelamination length will be ge

    29、nerated to characterize theinitiation and propagation of a delamination in a unidirectionalspecimen (Fig. 2). The principal reason for the observedFIG. 2 Delamination Resistance Curve (R Curve) from DCB TestD 5528 01 (2007)e12resistance to delamination is the development of fiber bridging(1-3).3This

    30、 fiber bridging mechanism results from growing thedelamination between two 0 unidirectional plies. Becausemost delaminations that form in multiply laminated compositestructures occur between plies of dissimilar orientation, fiberbridging does not occur. Hence, fiber bridging is considered tobe an ar

    31、tifact of the DCB test on unidirectional materials.Therefore, the generic significance of GIcpropagation valuescalculated beyond the end of the implanted insert is question-able, and an initiation value of GIcmeasured from theimplanted insert is preferred. Because of the significance of theinitiatio

    32、n point, the insert must be properly implanted andinspected (8.2).6.3 Three definitions for an initiation value of GIchave beenevaluated during round-robin testing (4). These include GIcvalues determined using the load and deflection measured (1)at the point of deviation from linearity in the load-d

    33、isplacementcurve (NL), (2) at the point at which delamination is visuallyobserved on the edge (VIS) measured with a microscope asspecified in 7.5, and (3) at the point at which the compliancehas increased by 5 % or the load has reached a maximum value(5 %/max) (see Section 11). The NL GIcvalue, whic

    34、h istypically the lowest of the three GIcinitiation values, isrecommended for generating delamination failure criteria indurability and damage tolerance analyses of laminated com-posite structures (5.2.3). Recommendations for obtaining theNL point are given in Annex A2. All three initiation values c

    35、anbe used for the other purposes cited in the scope (5.2.1 and5.2.2). However, physical evidence indicates that the initiationvalue corresponding to the onset of nonlinearity (NL) in theload versus opening displacement plot corresponds to thephysical onset of delamination from the insert in the inte

    36、rior ofthe specimen width (5). In round-robin testing of AS4/PEEKthermoplastic matrix composites, NL GIcvalues were 20 %lower than VIS and 5 %/max values (4).6.4 Delamination growth may proceed in one of two ways:(1) by a slow stable extension or (2) a run-arrest extension inwhich the delamination f

    37、ront jumps ahead abruptly. Only thefirst type of growth is of interest in this test method. Anunstable jump from the insert may be an indication of aproblem with the insert. For example, the insert may not becompletely disbonded from the laminate, or may be too thick,resulting in a large neat resin

    38、pocket, or may contain a tear orfold. Furthermore, rapid delamination growth may introducedynamic effects in both the test specimen and in the fracturemorphology. Treatment and interpretation of these effects isbeyond the scope of this test method. However, because crackjumping has been observed in

    39、at least one material in which theguidelines for inserts (see 8.2) were not violated, the specimensare unloaded after the first increment of delamination growthand reloaded to continue the test. This procedure induces anatural Mode I precrack in the DCB specimen. The firstpropagation GIcvalue is ref

    40、erred to as the Mode I precrack GIc.6.5 Application to Other Materials, Layups, and Architec-tures:6.5.1 Toughness values measured on unidirectional compos-ites with multiple-phase matrices may vary depending upon thetendency for the delamination to wander between variousmatrix phases. Brittle matri

    41、x composites with tough adhesiveinterleaves between plies may be particularly sensitive to thisphenomenon resulting in two apparent interlaminar fracturetoughness values: one associated with a cohesive-type failurewithin the interleaf and one associated with an adhesive-typefailure between the tough

    42、 polymer film and the more brittlecomposite matrix.6.5.2 Nonunidirectional DCB configurations may experi-ence branching of the delamination away from the midplanethrough matrix cracks in off-axis plies. If the delaminationbranches away from the midplane, a pure Mode I fracture maynot be achieved as

    43、a result of the structural coupling that mayexist in the asymmetric sublaminates formed as the delamina-tion grows. In addition, nonunidirectional specimens mayexperience significant anticlastic bending effects that result innonuniform delamination growth along the specimen width,particularly affect

    44、ing the observed initiation values.6.5.3 Woven composites may yield significantly greaterscatter and unique R curves associated with varying toughnesswithin and away from interlaminar resin pockets as thedelamination grows. Composites with significant strength ortoughness through the laminate thickn

    45、ess, such as compositeswith metal matrices or 3D fiber reinforcement, may experiencefailures of the beam arms rather than the intended interlaminarfailures.7. Apparatus7.1 Testing MachineA properly calibrated test machineshall be used that can be operated in a displacement controlmode with a constan

    46、t displacement rate in the range from 0.5to 5.0 mm/min (0.02 to 0.20 in./min). The testing machine shallconform to the requirements of Practices E4. The testingmachine shall be equipped with grips to hold the loadinghinges, or pins to hold the loading blocks, that are bonded tothe specimen.7.2 Load

    47、IndicatorThe testing machine load-sensing de-vice shall be capable of indicating the total load carried by thetest specimen. This device shall be essentially free from inertialag at the specified rate of testing and shall indicate the loadwith an accuracy over the load range(s) of interest of within

    48、61 % of the indicated value.7.3 Opening Displacement IndicatorThe opening dis-placement may be estimated as the crosshead separation,provided the deformation of the testing machine, with thespecimen grips attached, is less than 2 % of the openingdisplacement of the test specimen. If not, then the op

    49、eningdisplacement shall be obtained from a properly calibratedexternal gage or transducer attached to the specimen. Thedisplacement indicator shall indicate the crack opening dis-placement with an accuracy of within 61 % of the indicatedvalue once the delamination occurs.7.4 Load Versus Opening Displacement RecordAn X-Yplotter, or similar device, shall be used to make a permanentrecord during the test of load versus opening displacement atthe point of load application. Alternatively, the data may bestored digitally and post-processed.3The bold


    注意事项

    本文(ASTM D5528-2001(2007)e1 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.pdf)为本站会员(diecharacter305)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开