欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D5454-2004 Standard Test Method for Water Vapor Content of Gaseous Fuels Using Electronic Moisture Analyzers《使用电子湿度分析仪测定气体燃料中水蒸气含量的标准试验方法》.pdf

    • 资源ID:519839       资源大小:63.72KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D5454-2004 Standard Test Method for Water Vapor Content of Gaseous Fuels Using Electronic Moisture Analyzers《使用电子湿度分析仪测定气体燃料中水蒸气含量的标准试验方法》.pdf

    1、Designation: D 5454 04Standard Test Method forWater Vapor Content of Gaseous Fuels Using ElectronicMoisture Analyzers1This standard is issued under the fixed designation D 5454; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the y

    2、ear of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the watervapor content of gaseous fuels by the use of electronic

    3、moistureanalyzers. Such analyzers commonly use sensing cells basedon phosphorus pentoxide, P2O5, aluminum oxide, Al2O3,orsilicon sensors piezoelectric-type cells and laser based tech-nologies.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It

    4、 is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:D 1142 Test Method for Water Vapor Content of GaseousFuels by Measurement of Dew-

    5、Point TemperatureD 1145 Test Method for Sampling Natural GasD 4178 Practice for Calibrating Moisture Analyzers2D 4888 Test Method for Water Vapor In Natural Gas UsingLength-of-Stain Detector Tubes3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 capacitance-type cellthis cell us

    6、es aluminum coatedwith Al2O3as part of a capacitor. The dielectric Al2O3filmchanges the capacity of the capacitor in relation to the watervapor present. Unlike P2O5cells, this type is nonlinear in itsresponse. If silicon is used instead of aluminum, the silicon cellgives improved stability and very

    7、rapid response.3.1.2 electrolytic-type cellthis cell is composed of twonoble metal electrode wires coated with P2O5. A bias voltage isapplied to the electrodes, and water vapor chemically reacts,generating a current between the electrodes proportional to thewater vapor present.3.1.3 piezoelectric-ty

    8、pe cell sensor consists of a pair ofelectrodes which support a quartz crystal (QCM) transducer.When voltage is applied to the sensor a very stable oscillationoccurs. The faces of the sensor are coated with a hygroscopicpolymer.As the amount of moisture absorbed onto the polymervaries, a proportional

    9、 change in the oscillation frequency isproduced.3.1.4 laser-type cell consists of a sample cell with anoptical head mounted on one end and a mirror mounted on theother. The optical head contains a NIR laser, which emits lightat a wavelength known to be absorbed by the water molecule.Mounted along si

    10、de the laser is a detector sensitive to NIRwavelength light. Light from the laser passes through the thefar end and returns to the detector in the optical head.Aportionof the emitted light, proportional to the water moleculespresent, is absorbed as the light transits the sample cell andreturns to th

    11、e detector.3.1.5 water contentwater content is customarily ex-pressed in terms of dewpoint, F or C, at atmosphericpressure, or the nonmetric term of pounds per million standardcubic feet, lb/MMSCF. The latter term will be used in this testmethod because it is the usual readout unit for electronicana

    12、lyzers. One lb/MMSCF = 21.1 ppm by volume or 16.1mgm/m3of water vapor. Analyzers must cover the range 0.1 to50 lb/MMSCF.3.1.6 water dewpointthe temperature (at a specified pres-sure) at which liquid water will start to condense from thewater vapor present. Charts of dewpoints versus pressure andwate

    13、r content are found in Test Method D 1142.4. Significance and Use4.1 Water content in fuel gas is the major factor influencinginternal corrosion. Hydrates, a semisolid combination of hy-drocarbons and water, will form under the proper conditionscausing serious operating problems. Fuel heating value

    14、isreduced by water concentration. Water concentration levels aretherefore frequently measured in natural gas systems. A com-mon pipeline specification is 4 to 7 lb/MMSCF. This testmethod describes measurement of water vapor content withdirect readout electronic instrumentation.1This test method is u

    15、nder the jurisdiction ofASTM Committee D03 on GaseousFuels and is the direct responsibility of Subcommittee D03.05 on Determination ofSpecial Constituents of Gaseous Fuels.Current edition approved Dec. 1, 2004. Published January 2005. Originallyapproved in 1993. Last previous edition approved in 199

    16、9 as D545493(1999).2Withdrawn.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5. Apparatus5.1 The moisture analyzer and sampling system will havethe following general specifications:5.1.1 Sampling SystemMost errors involved with mois

    17、-ture analysis can be eliminated with a proper sampling system.5.1.1.1 A pipeline sample should be obtained with a probeper Method D 1145. The sample temperature must be main-tained 2C (3F) above the dewpoint of the gas to preventcondensation in the sample line or analyzer. Use of insulationor heat

    18、tracing is recommended at cold ambient temperatures.5.1.1.2 Analyzer sensors are very sensitive to contamina-tion. Any contaminants injurious to the sensor must be re-moved from the sample stream before reaching the sensor. Thismust be done with minimum impact on accuracy or time ofresponse. If the

    19、contaminant is an aerosol of oil, glycol, and soforth, a coalescing filter or semipermeable membrane separatormust be used.5.1.2 ConstructionSampling may be done at high or lowpressure. All components subject to high pressure must berated accordingly. To minimize diffusion and absorption, allmateria

    20、ls in contact with the sample before the sensor must bemade of stainless steel. Tubing of18-in. stainless steel isrecommended. (WarningUse appropriate safety precautionswhen sampling at high pressure.)5.1.2.1 Pressure gages with bourdon tubes should beavoided as a result of water accumulation in the

    21、 stagnantvolume.5.1.2.2 Sample purging is important to satisfactory responsetime. There must be a method to purge the sample line andsample cleanup system.5.1.3 ElectronicsOutput from the sensor will be linear-ized for analog or digital display in desired units (usuallylb/MMSCF). There must be an ad

    22、justment for calibrationaccuracy available that can be used in the field if a suitablestandard is available. (This does not apply to instruments thatassume complete chemical reaction of water. Their accuracystill must be verified as in Section 6.)5.1.4 Power SupplyAnalyzers for field use will havere

    23、chargeable or easily replaceable batteries. (WarningAnalyzers for use in hazardous locations because of combus-tible gas must be certified as meeting the appropriate require-ments.)6. Calibration6.1 A calibration technique is described in Practice D 4178that should be used to verify the accuracy of

    24、the analyzer. Thismethod uses the known vapor pressure of water at 0C andmixes wet gas and dry gas to make up the total pressure so thata standard gas of known water concentration is achieved.6.1.1 Instruments very sensitive to sample flow must becompensated for barometric pressure.6.2 Acommercially

    25、 made water vapor calibrator is shown inFig. 1, which uses essentially the same technique. This methodis useful only between 5 to 50 lb/MMSCF.6.3 Low-range water vapor standards may be obtained bythe use of water permeation tubes. Permeation rates must beestablished by tube weight loss.6.4 Compresse

    26、d gas water vapor standards may be used,provided they are checked by an independent method once amonth.6.5 Calibrate the analyzer using one of the standards in 6.3and 6.4 and respective procedures. Calibration must be at twopoints, one higher and one lower than average expectedreadings. Some analyze

    27、rs can have large nonlinear errors. Usethe calibration adjustment if applicable.7. Procedure7.1 PreparationThe analyzer operation and calibrationshould be checked according to the manufacturers recommen-dations prior to use. See Section 6. Verification of a dryinstrument using dry compressed nitroge

    28、n to get a readingbelow 1 lb/MMSCF is recommended before field use.7.2 Sample ProcedureSample as in 5.1.1.1. Use as short asample line as practical. Purge the sample for 2 min beforevalving to the sensor.7.3 ReadingThe time for a sensor to come to equilibriumis variable depending on its type and con

    29、dition. The analyzermay require 20 min to stabilize. Some analyzers have anexternal recorder output, and these can be used with a chartrecorder to become familiar with the true equilibrium responsetime.8. Precision and Bias8.1 Precision data is being prepared for this test method byan interlaborator

    30、y study.D5454042FIG. 1 Moisture CalibratorASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and t

    31、he riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision

    32、of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shoul

    33、dmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).D5454043


    注意事项

    本文(ASTM D5454-2004 Standard Test Method for Water Vapor Content of Gaseous Fuels Using Electronic Moisture Analyzers《使用电子湿度分析仪测定气体燃料中水蒸气含量的标准试验方法》.pdf)为本站会员(orderah291)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开