欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf

    • 资源ID:515689       资源大小:80.63KB        全文页数:5页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf

    1、Designation: D3874 13 An American National StandardStandard Test Method forIgnition of Materials by Hot Wire Sources1This standard is issued under the fixed designation D3874; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the yea

    2、r of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method is intended to differentiate, in apreliminary fashion, among materials with respect to theirres

    3、istance to ignition because of their proximity to electrically-heated wires and other heat sources.21.2 This test method applies to molded or sheet materialsavailable in thicknesses ranging from 0.25 to 6.4 mm (0.010 to0.25 in.).1.3 This test method applies to materials that are rigid atnormal room

    4、temperatures. That is, it applies to materials forwhich the specimen does not deform during preparation,especially during the wire-wrapping step described in 10.1.Examples of deformation that render this test method inappli-cable include:1.3.1 Bowing, in either a transverse or a longitudinaldirectio

    5、n, or twisting of the specimen, during the wire-wrapping step, to a degree visible to the eye.1.3.2 Visible indentation of the wrapped wire into thespecimen.1.4 The values stated in SI units are to be regarded as thestandard. The inch-pound units given in parentheses are forinformation only. (See SI

    6、10 for further details.)1.5 This test method measures and describes the response ormaterials, products, or assemblies to heat and flame undercontrolled conditions, but does not by itself incorporate allfactors required for fire hazard or fire risk assessment of thematerials, products, or assemblies

    7、under actual fire conditions.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations

    8、 prior to use.1.7 Fire testing is inherently hazardous. Adequate safe-guards for personnel and property shall be employed inconducting these tests.NOTE 1Although this test method and IEC 60695-2-20, differ inapproach and in detail, data obtained using either are technically equiva-lent.2. Referenced

    9、 Documents2.1 ASTM Standards:3D1711 Terminology Relating to Electrical InsulationE176 Terminology of Fire StandardsIEEE/ASTM SI-10 American National Standard for MetricPractice2.2 IEC Standards:IEC 60695-2-20 Fire Hazard TestingSection 20: Glowing/Hot-wire Based Test Methods, Hot-wire Coil Ignitabil

    10、ityTest on Materials4IEC 60695-4 Fire Hazard TestingPart 4: TerminologyConcerning Fire Tests42.3 ISO StandardsISO 13943 Fire SafetyVocabulary53. Terminology3.1 Definitions:3.1.1 Use Terminology E176 and ISO 13943 and IEC60695-4 for definitions of terms used in this test method andassociated with fir

    11、e issues. Where differences exist indefinitions, those contained in Terminology E176 shall be used.Use Terminology D1711 for definitions of terms used in thistest method and associated with electrical insulation materials.3.2 Definitions of Terms Specific to This Standard:3.2.1 ignition, ninitiation

    12、 of flaming produced by combus-tion in the gaseous phase that is accompanied by the emissionof light.1This test method is under the jurisdiction of ASTM Committee D09 onElectrical and Electronic Insulating Materials and is the direct responsibility ofSubcommittee D09.21 on Fire Performance Standards

    13、.Current edition approved Nov. 1, 2013. Published December 2013. Originallyapproved in 1988. Last previous edition approved in 2012 as D3874120. DOI:10.1520/D3874-13.2K. N. Mathes, Chapter 4, “Surface Failure Measurements”, EngineeringDielectrics, Vol. IIB, Electrical Properties of Solid Insulating

    14、Materials, Measure-ment Techniques, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Docum

    15、ent Summary page onthe ASTM website.4Available from International Electrotechnical Commission (IEC), 3 rue deVaremb, Case postale 131, CH-1211, Geneva 20, Switzerland, http:/www.iec.ch.5Available from International Organization for Standardization (ISO), 1, ch. dela Voie-Creuse, Case postale 56, CH-

    16、1211, Geneva 20, Switzerland, http:/www.iso.ch.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States14. Summary of Test Method4.1 In this test method, a rectangular bar-shaped

    17、 testspecimen, with the center portion wrapped with a coil of heaterwire, is supported horizontally at both ends. The circuit is thenenergized by applying a fixed power density to the heater wire,which rapidly heats up. The behavior of the test specimen isobserved. until one of the following happens

    18、: (a) the materialunder test ignites, (b) the material under test melts, (c) 120 s ofexposure have gone by without ignition or melting. The time toignition and the time to melt through, as applicable, arerecorded.5. Significance and Use5.1 During operation of electrical equipment, includingwires, re

    19、sistors, and other conductors, it is possible for over-heating to occur, under certain conditions of operation, or whenmalfunctions occur. When this happens, a possible result isignition of the insulation material.5.2 This test method assesses the relative resistance ofelectrical insulating material

    20、s to ignition by the effect of hotwire sources.5.3 This test method determines the average time, inseconds, required for material specimens to ignite under thespecified conditions of test.5.4 This method is suitable to characterize materials, subjectto the appropriate limitations of an expected prec

    21、ision of615 %, to categorize materials.5.5 In this procedure the specimens are subjected to one ormore specific sets of laboratory conditions. If different testconditions are substituted or the end-use conditions arechanged, it is not always possible by or from this test to predictchanges in the fir

    22、e-test-response characteristics measured.Therefore, the results are valid only for the fire test exposureconditions described in this procedure.6. Apparatus6.1 Heater WireThe heater wire shall be a No. 24 AWG,Nichrome (Nickel-Chrome) wire, that is iron free, with thefollowing nominal properties: a w

    23、ire composition of 20 %chromium-80 % nickel, a diameter of 0.5 mm (0.020 in.), anominal cold resistance of 5.28 /m (1.61/ft), and a length-to-mass ratio of 580 m/kg (864 ft/lb).6.2 Calibrate each spool of test wire for energizedresistance, in accordance with the method outlined in AnnexA1. Such cali

    24、bration is necessary due to the typical variabilityof wire lots in composition, processing, sizing, and metallurgy.6.3 Supply CircuitThe supply circuit, which is a means forelectrically energizing the heater wire, shall comply with 6.3.1 6.3.4.6.3.1 The supply circuit capacity shall be sufficient to

    25、maintain a continuous linear 50 to 60 Hz power density of atleast 0.31 W/mm (8.0 W/in.) over the length of the heater wireat or near unity power factor. The power density of the supplycircuit at 60 A and 1.5 V shall approximate 0.3 W/mm.6.3.2 The supply circuit shall have a means of voltageadjustmen

    26、t to achieve the desired current as determined fromAnnex A1. Such means of voltage adjustment shall provide asmooth and continuous adjustment of the power level.6.3.3 The supply circuit shall have a means of voltageadjustment of measuring the power to within 62%.6.3.4 The test circuit shall be provi

    27、ded with an easilyactuated on-off switch for the test power, and with timers torecord the duration of the application of test power.6.4 Test ChamberUse as a test chamber a draft-free closedchamber having a volume of at least 0.3 m3(10.5 ft3). The ratiobetween any two transverse dimensions of the cha

    28、mber shallnot exceed 2.5. The test chamber shall be positively vented tothe outside of the test facility before and after the test, but itshall remain closed and unvented during the test. The chambershall be equipped with an observation window.6.5 Test FixtureTwo supporting posts shall be positioned

    29、70 mm (234 in.) apart to support the specimen in a horizontalposition, at a height of 60 mm (238 in.) above the bottom of thetest chamber, in the approximate center of the test chamber.6.6 Specimen-Winding FixtureA fixture shall be providedto uniformly position the wire, with a spacing of 6.35 6 0.0

    30、5mm (0.250 6 0.002 in.) between turns and with a windingtension of 5.4 6 0.02 N (1.21 6 0.0045 lbf).7. Safety Precautions7.1 It is possible that fumes and products of incompletecombustion are liberated from the specimen when conductingthis test. Avoid the inhalation of such fumes and products ofcomb

    31、ustion and exhaust them from the test chamber after eachrun.7.2 Take precautions to safeguard the health of personnelagainst the risk of explosion or fire, the inhalation of smoke, orother products of combustion, or the exposure to the residuespotentially remaining on the specimen after testing.8. T

    32、est Specimens8.1 The test specimen shall consist of a bar measuring 12.56 0.2 by 125 6 5mm(12 by 5 in.) and of the thickness to betested.9. Conditioning9.1 Condition the specimens and heater wire as follows:9.1.1 Sample ConditioningPrior to testing, maintain thesamples in a dry condition. If this is

    33、 not practical, dry thesamples in an air-circulating oven at 70 6 2C (158 6 3.5F)for seven days and cool over a desiccant, such as silica gel, fora minimum of 4 h. Prior to testing, condition the dry samplesfor at least 40 h at 23 6 2C (73 6 3.5F) and 50 6 5%relative humidity. Maintain the test faci

    34、lities at 50 6 5%relative humidity and 23C.9.1.2 Heater Wire Conditioning and CalibrationFor eachtest, use a length of previously calibrated wire measuringapproximately 250 mm (10 in.). Prior to testing, anneal eachstraight length by energizing the wire to dissipate 0.26 W/mmof length (6.5 W/in. of

    35、length) for 8 to 12 s to relieve theinternal stresses within the wire. Calibrate the wire in accor-dance with Annex A1 to determine the correct current level.D3874 13210. Procedure10.1 Wrap the center portion of the test specimen with a testwire, conditioned in accordance with 9.1.2, using the windi

    36、ngfixture as specified in 6.6 and a winding force of 5.4 6 0.02 N(1.21 6 0.0045 lbf). Apply five complete turns spaced 6.35 60.05 mm (14 in.) between turns.10.2 Position the specimen on the test fixture such that thelength and width are horizontal. Securely connect the free endsof the wire to the te

    37、st circuit. The connection is to be capableof transmitting the test power without significant losses, andinsofar as possible, not mechanically affect the specimenduring the test.10.3 Start the test by energizing the circuit to dissipate 0.26W/mm (6.5 W/in.) through the nickel-chrome wire. The 0.26W/

    38、mm shall be maintained during the test.10.4 Continue heating until the test specimen ignites (see3.2.1). When ignition occurs, shut off the power and record thetime to ignition. Discontinue the test if ignition does not occurwithin 120 s. For specimens that melt through the wire withoutignition, dis

    39、continue the test when the specimen is no longer inintimate contact with all five turns of the heater wire.10.5 Note the following observations:10.5.1 The time to ignition of each specimen, and10.5.2 The time for each specimen to melt through the wireif appropriate.11. Report11.1 Report the followin

    40、g information:11.1.1 Complete identification of the material tested includ-ing type, source, and manufacturers code number,11.1.2 Testing room conditions,11.1.3 Number of specimens tested,11.1.4 Thickness of specimens tested,11.1.5 Time to ignition for each specimen or the time atwhich the wire turn

    41、s no longer contact the specimen,11.1.6 Calculation and record of the average time forignition,11.1.7 Calibrated test current, and11.1.8 Geometry of test chamber.12. Precision and Bias12.1 It is likely that, when care is taken to adhere to this testmethod, the average determined will fall within 615

    42、 % of thevalue obtained by an interlaboratory evaluation.12.2 A statement of bias for this test method is not practi-cable since there is no standard reference material availablewith a known characteristic of true resistance to ignition.13. Keywords13.1 hot wire; ignition; resistance to ignitionANNE

    43、X(Mandatory Information)A1. TEST WIRE CALIBRATIONA1.1 GeneralA1.1.1 Due to normal variations in metals, it is essential thateach spool of test wire be calibrated with respect to energizedresistance according to the following procedure. A mathemati-cal relationship is developed between current and po

    44、werdissipation, based on performance under the calibration experi-ment. Essentially, the voltage over a carefully measured lengthof wire, and the current through the wire are measured over arange of values to establish the power-current relationship. Ithas been found that the variation of electrical

    45、 resistance of thetest wire within the spool is not significant.A1.2 Apparatus and EquipmentA1.2.1 Position approximately 250 mm (10 in.) of test wireas a horizontal open loop connected to the supply contacts ofthe hot wire ignition equipment (see Fig. A1.1). Place anammeter in the circuit. Fit a vo

    46、ltmeter with small voltage-measuring probes for measuring voltage across a measuredlength of the wire.A1.3 ProcedureA1.3.1 Position the voltmeter probes near the ends of thetest wire prior to connecting the wire, with the wire in ahorizontal straight position. Carefully measure and record thelength

    47、of the wire between the contact points of the clips.FIG. A1.1 Test ApparatusD3874 133Connect the wire to the test apparatus and energize to currentlevels, from 1 to 8 A in increments of 1 A. Record current andvoltage at each level.A1.4 CalculationA1.4.1 For each measurement, calculate the linear pow

    48、erdensity as follows:W 5EILwhere:W = linear power density, W/mm (or W/in.),E = measured voltage, V,I = measured current, A, andL = measured length between voltage clips, mm (or in.).A1.4.2 Construct a calibration curve of current as a functionof linear power density. The desired calibrated current f

    49、or thegiven spool of test wire is then obtained from a calibrationcurve as that current corresponding to 0.26 W/mm (6.5 W/in.)(see Fig. A1.2).A1.4.3 Note that when current is equal to zero, the powershall be equal to zero.D3874 134SUMMARY OF CHANGESCommittee D09 has identified the location of selected changes to this test method since the last issue,D387412, that may impact the use of this test method. (Approved November 1, 2013)(1) Revised A1.4.3.Committee D09 has identified the location of selected changes to this test method since the last issue,D3


    注意事项

    本文(ASTM D3874-2013 Standard Test Method for Ignition of Materials by Hot Wire Sources《用电热丝法测量材料着火性的标准试验方法》.pdf)为本站会员(progressking105)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开