欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D3610-2000(2004) Standard Test Method for Total Cobalt In Alumina-Base Cobalt-Molybdenum Catalyst by Potentiometric Titration Method《电位滴定法测定氧化铝基钴-钼催化剂中总钴含量的标准试验方法》.pdf

    • 资源ID:515097       资源大小:28.85KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D3610-2000(2004) Standard Test Method for Total Cobalt In Alumina-Base Cobalt-Molybdenum Catalyst by Potentiometric Titration Method《电位滴定法测定氧化铝基钴-钼催化剂中总钴含量的标准试验方法》.pdf

    1、Designation: D 3610 00 (Reapproved 2004)Standard Test Method forTotal Cobalt in Alumina-Base Cobalt-Molybdenum Catalystby Potentiometric Titration Method1This standard is issued under the fixed designation D 3610; the number immediately following the designation indicates the year oforiginal adoptio

    2、n or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of cobalt(expressed as the oxide

    3、) in fresh cobalt-molybdenum catalyst,in the range of 0.5 to 10 % cobalt oxide.1.2 This standard does not purport to address all of thesafety concerns, if any associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and deter

    4、mine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:D 1193 Specification for Reagent Water2E 50 Practices for Apparatus, Reagents, and Safety Consid-erations for Chemical Analysis of Metals, Ores, andRelated MaterialsE 173 Practice for Conducting

    5、Interlaboratory Studies ofMethods for Chemical Analysis of Metals33. Summary of Test Method3.1 The sample is decomposed by adding water and sulfuricacid and then heating until completely dissolved. The coldsolution is diluted with water and transferred to a 250-mLvolumetric flask. An aliquot of this

    6、 solution containing be-tween 10 and 30 mg of cobalt is transferred to a 250-mL beakercontaining measured volumes of potassium ferricyanide andammonium citrate solutions, ammonia, and petroleum ether.The excess of ferricyanide is then back-titrated with a standardcobalt solution.4. Significance and

    7、Use4.1 This test method sets forth a procedure by whichcatalyst samples may be compared either on an interlaboratoryor intralaboratory basis. It is anticipated that catalyst producersand users will find this test method to be of value.5. Interferences5.1 None of the elements normally found in fresh

    8、cobalt-molybdenum catalysts interferes with this method. (Elementssuch as nickel, phosphorus, silicon, aluminum, and molybde-num do not interfere; elements such as iron, chromium,vanadium, and manganese do interfere).6. Apparatus6.1 Analytical Balance and WeightsThe balance used toweigh the sample s

    9、hall have a precision of 0.1 mg. Analyticalweights shall be of precision grade or calibrated against a set ofcertified standard weights.6.2 BuretThe 50-mL buret used to deliver the standardpotassium ferricyanide and standard cobalt solutions shall be ofprecision grade and shall be read to 0.01 mL by

    10、 interpolation.6.3 GlasswareBeakers used in the analysis of the sampleshall be of chemical-resistant glass and free of etched surfaces.Before using, all glassware shall be cleaned in hot dilutehydrochloric acid and thoroughly rinsed with water.6.4 Potentiometric Titration ApparatusApparatus No. 3Bof

    11、 Practices E 50, or equivalent.6.5 Hot PlateCapable of maintaining surface temperatureof at least 300C.7. Reagents7.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee

    12、 on Analytical Reagents of the American Chemical Society,where such specifications are available.4Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.1This test method is under t

    13、he jurisdiction of ASTM Committee D32 onCatalysts and is the direct responsibility of Subcommittee D32.03 on ChemicalComposition.Current edition approved April 1, 2004. Published April 2004. Originallyapproved in 1977. Last previous edition D 361000.2For referenced ASTM standards, visit the ASTM web

    14、site, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn.4Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington,

    15、DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Annual Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.1Copyright ASTM I

    16、nternational, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.7.2 Purity of WaterUnless otherwise indicated, referencesto water shall be understood to mean reagent water conformingto Specification D 1193, Type IV.7.3 Ammonium Citrate Solution (680 g/L)Dissolve 680

    17、 gof diammonium hydrogen citrate (NH4)2HC6H5O7in 750 mLof water and dilute to 1 L.7.4 Ammonium Hydroxide (sp. gr. 0.90)Concentrated am-monium hydroxide (NH4OH).7.5 Cobalt Standard Solution (1 mL = 1.494 mg of CoO)Dissolve 5.80 g of cobalt nitrate Co(NO3)26H2O in 500 mL ofwater, transfer to a 1-L vol

    18、umetric flask, dilute to volume, andmix. Since cobalt nitrate may not always be stoichiometric, itscontent may be checked versus high-purity cobalt metal(99.9 % purity).7.6 Petroleum Ether, b.p. 60 to 110C.7.7 Potassium Ferricyanide Solution (1 mL ; 1.494 mg ofCoO):7.7.1 Dissolve 6.58 g of potassium

    19、 ferricyanide K3Fe(CN)6in water and dilute to 1 L. Store the solution in a dark-coloredbottle. Standardize the solution just before use as follows:Transfer from a 50-mL buret approximately 25 mL ofK3Fe(CN)6solution to a 250-mL beaker. Record the interpo-lated buret reading to the nearest 0.01 mL. Ad

    20、d 25 mL ofammonium citrate solution, 90 mL of concentrated ammonia,and stir. Cool to 5 to 10C and maintain this temperature duringthe titration. Cover the solution with a layer of 10 mL ofpetroleum ether. Transfer the beaker to a potentiometric titra-tion apparatus. While stirring, titrate the K3Fe(

    21、CN)6solutionwith cobalt standard solution (1 mL = 1.494-mg CoO) using a50-mL buret. Titrate at a fairly rapid rate until the end point isapproached and then add the titrant in one drop incrementsthrough the end point. After the addition of each increment,record the buret reading and voltage when equ

    22、ilibrium isreached. Estimate the buret reading at the end point to thenearest 0.01 mL by interpolation.7.7.2 Calculate the cobalt oxide equivalent as follows:CoO equivalent, mg/mL 5 X 3 Y!/Z (1)where:X = millilitres of cobalt standard solution required totitrate the potassium ferricyanide solution,Y

    23、 = milligrams of CoO per millilitre of standard solution,andZ = millilitres of potassium ferricyanide solution.Triplicate values should be obtained for the cobalt oxideequivalent. The values obtained should check within 1 to 2parts per thousand.7.8 Sulfuric Acid (sp. gr. 1.84)Concentrated sulfuric a

    24、cid(H2SO4).8. Sample Preparation8.1 Pulverize the analytical sample to pass a No. 100(150-m) sieve. Ignite the pulverized sample for 30 min at550C in a muffle furnace. Allow to cool in a desiccator.9. Procedure9.1 Transfer a 4.5-g sample, weighed to the nearest 1 mg, toa 250-mL beaker. Moisten with

    25、25 mL of water, add slowly 40mL of concentrated sulfuric acid, and stir. Cover the beaker andheat, using a hot plate or a Bunsen burner, until the sample iscompletely decomposed. (Silica, if present, will not dissolve.)Allow to cool and dilute to about 200 mL with distilled water.Allow to cool, tran

    26、sfer into a 250-mL volumetric flask, diluteto volume, and mix.9.2 Prepare in a 250-mL beaker a mixture of the following:25.0 mL of ferricyanide solution measured to the nearest 0.01mL, 25 mL of ammonium citrate solution, and 90 mL ofconcentrated ammonia. Stir the mixture and cover with 10 mLof petro

    27、leum ether.9.3 Cool to 5 to 10C, transfer the beaker to a potentiomet-ric titration apparatus, and maintain the 5 to 10C temperatureduring the titration.9.4 While stirring, transfer, using a pipet, from the 250-mLvolumetric flask an aliquot containing between 10 and 30 mgof CoO.9.5 Using a 50-mL bur

    28、et, titrate the excess K3Fe(CN)6withthe cobalt solution (1 mL = 1.494-mg CoO) at a fairly rapidrate until the end point is approached, and then add the titrantin one-drop increments through the end point.NOTE 1For a successful titration, the sample solution must be addedto the excess K3Fe(CN)6soluti

    29、on and not vice versa.9.6 After the addition of each increment, record the buretreading and voltage when equilibrium is reached. Estimate theburet reading at the end point to the nearest 0.01-mL interpo-lation.10. Calculation10.1 Calculate the percentage of cobalt oxide as follows:Cobalt oxide, % 5

    30、AB 2 CD!/E# 3 100 (2)where:A = millilitres of standard potassium ferricyanide solution,B = cobalt oxide equivalent of the standard potassiumferricyanide solution,C = millilitres of cobalt standard solution,D = concentration of cobalt standard solution (mg CoO/mL), andE = milligrams of sample used.TA

    31、BLE 1 Statistical InformationTest SampleCoO Found,%Repeatability(R1, E 173)Reproducibility(R2, E 173)1. SN-4318 (nominal 3 % CoO, 15 % MoO3) 3.72 0.17 % CoO 0.22 % CoO2. SN-4319 (nominal 6 % CoO, 12 % MoO3) 5.58 0.12 % CoO 0.19 % CoOD 3610 00 (2004)211. Precision511.1 Seven laboratories participated

    32、 in supplying data underthe conditions outlined in Practice E 173. Statistical datacalculated in accordance with this procedure are presented inTable 1.12. Keywords12.1 alumina-base catalysts; cobalt; molybdenum;potentiometricASTM International takes no position respecting the validity of any patent

    33、 rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at

    34、 any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comment

    35、s will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted b

    36、y ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).5Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR: D32-1001.D 3610 00 (2004)3


    注意事项

    本文(ASTM D3610-2000(2004) Standard Test Method for Total Cobalt In Alumina-Base Cobalt-Molybdenum Catalyst by Potentiometric Titration Method《电位滴定法测定氧化铝基钴-钼催化剂中总钴含量的标准试验方法》.pdf)为本站会员(dealItalian200)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开