欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D3352-2008 Standard Test Method for Strontium Ion in Brackish Water Seawater and Brines.pdf

    • 资源ID:514637       资源大小:81.42KB        全文页数:5页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D3352-2008 Standard Test Method for Strontium Ion in Brackish Water Seawater and Brines.pdf

    1、Designation: D 3352 08Standard Test Method forStrontium Ion in Brackish Water, Seawater, and Brines1This standard is issued under the fixed designation D 3352; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revisi

    2、on. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of solublestrontium ion in brackish water, seawater, and brines by atomicabsorption spe

    3、ctrophotometry.1.2 Samples containing from 5 to 2100 mg/L of strontiummay be analyzed by this test method.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport to address all of thesafety concern

    4、s, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 1129 Terminology Relating to WaterD 1193

    5、 Specification for Reagent WaterD 2777 Practice for Determination of Precision and Bias ofApplicable Test Methods of Committee D19 on WaterD 3370 Practices for Sampling Water from Closed ConduitsD 5810 Guide for Spiking into Aqueous SamplesD 5847 Practice for Writing Quality Control Specificationsfo

    6、r Standard Test Methods for Water Analysis3. Terminology3.1 DefinitionsFor definitions of terms used in this testmethod, refer to Terminology D 1129.4. Summary of Test Method4.1 This test method is dependent on the fact that metallicelements, in the ground state, will absorb light of the samewavelen

    7、gth they emit when excited. When radiation from agiven excited element is passed through a flame containingground state atoms of that element, the intensity of thetransmitted radiation will decrease in proportion to the amountof the ground state element in the flame. A hollow cathodelamp whose catho

    8、de is made of the element to be determinedprovides the radiation. The metal atoms3to be measured areplaced in the beam of radiation by aspirating the specimen intoan oxidant-fuel flame. A monochromator isolates the charac-teristic radiation from the hollow cathode lamp and a photo-sensitive device m

    9、easures the attenuated transmitted radiation.4.2 Since the variable and sometimes high concentrations ofmatrix materials in the waters and brines affect absorptiondifferently, it is difficult to prepare standards sufficiently similarto the waters and brines. To overcome this difficulty, themethod of

    10、 additions is used in which three identical samplesare prepared and varying amounts of a standard added to twoof them. The three samples are then aspirated, the concentra-tion readings recorded, and the original sample concentrationcalculated.5. Significance and Use5.1 This test method4can be used t

    11、o determine strontiumions in brackish water, seawater, and brines.6. Interferences6.1 The chemical suppression caused by silicon, aluminum,and phosphate is controlled by adding lanthanum. The lantha-num also controls ionization interference.7. Apparatus7.1 Atomic Absorption SpectrophotometerThe inst

    12、rumentshall consist of atomizer and burner, suitable pressure-regulating devices capable of maintaining constant oxidant andfuel pressure for the duration of the test, a hollow cathode lampfor each metal to be tested, an optical system capable of1This test method is under the jurisdiction of ASTM Co

    13、mmittee D19 on Waterand is the direct responsibility of Subcommittee D19.05 on Inorganic Constituentsin Water.Current edition approved Aug. 15, 2008. Published September 2008. Originallyapproved in 1974. Last previous edition approved in 2003 as D 3352 031.2For referenced ASTM standards, visit the A

    14、STM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3For additional information on atomic absorption, see the following references:Angino, E. E., and Billin

    15、gs, G. K., Atomic Absorption Spectrophotometry inGeology, Elsevier Publishing Co., New York, N.Y., 1967. Dean, J. A., and Rains, T.C., Editors, Flame Emission and Atomic Absorption Spectrometry Vol 1 Theory,Marcel Dekker, New York, NY, 1969.4Additional information is contained in the following refer

    16、ences: Fletcher, G. F.,and Collins, A. G., “Atomic Absorption Methods of Analysis of Oilfield Brines:Barium, Calcium, Copper, Iron, Lead, Lithium, Magnesium, Manganese, Potassium,Sodium, Strontium, and Zinc,” U.S. Bureau of Mines, Report of Investigations7861, 1974, 14 pp. Collins, A. G., Geochemist

    17、ry of Oilfield Waters, ElsevierPublishing Co., Amsterdam. The Netherlands, 1975.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.isolating the desired line of radiation, an adjustable slit, aphotomultiplier tube or other photosensitiv

    18、e device as a lightmeasuring and amplifying device, and a read-out mechanismfor indicating the amount of absorbed radiation.7.1.1 Multi-Element Hollow Cathode Lamps are availableand have been found satisfactory.7.2 Pressure-Reducing ValvesThe supplies of fuel andoxidant shall be maintained at pressu

    19、res somewhat higher thanthe controlled operating pressure of the instrument by suitablevalves.8. Reagents and Materials8.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commi

    20、t-tee onAnalytical Reagents of theAmerican Chemical Society,5where such specifications are available. Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.8.2 Purity of Water Unle

    21、ss otherwise indicated, referenceto water shall be understood to mean reagent water conformingto Specification D 1193, Type I. Other reagent water types maybe used provided it is first ascertained that the water is ofsufficiently high purity to permit its use without adverselyaffecting the precision

    22、 and bias of the test method. Type IIIwater was specified at the time of round robin testing of thistest method.8.3 Lanthanum Solution (5 % La)Wet 58.65 g of lantha-num oxide (La2O3) with water. Add 250 mL of concentratedhydrochloric acid (sp gr 1.19) very slowly until the material isdissolved. Dilu

    23、te solution to 1 litre with water.8.4 Strontium Solution, Standard (1 mL = 1 mg Sr)Dissolve 2.415 g of strontium nitrate Sr(NO3)2in10mLofconcentrated hydrochloric acid (sp gr 1.19) and about 700 mLof water. Dilute solution to 1 Lwith water. One millilitre of thissolution contains 1 mg of strontium.8

    24、.5 Oxidant, for Atomic Absorption Spectrophotometer:8.5.1 Air, which has been cleaned and dried through asuitable filter to remove oil, water, and other foreign sub-stances, is the usual oxidant.8.5.2 Nitrous Oxide may be required as an oxidant forrefractory-type metals.8.6 Fuel, for Atomic Absorpti

    25、on Spectrophotometer:8.6.1 AcetyleneStandard, commercially available acety-lene is the usual fuel. Acetone, always present in acetylenecylinders, can be prevented from entering and damaging theburner head by replacing a cylinder which only has 100 psig ofacetylene remaining.9. Sampling9.1 Collect th

    26、e sample in accordance with Practices D 3370.10. Procedure10.1 Strontium is determined at the 460.7-nm wavelengthwith an air-acetylene flame.10.2 Preliminary CalibrationUsing micropipets preparestandard strontium solutions containing 1 to 10 mg/L ofstrontium using the standard strontium solution and

    27、 50-mLvolumetric flasks. Before making up to volume, add to each ofthese and to a blank, 5 mL of the lanthanum solution. Aspiratethese standards and the blank (for background setting) andadjust the curvature controls, if necessary, to obtain a linearrelationship between absorbance and the actual con

    28、centrationof the standards.10.3 Transfer an aliquot of water or brine (previouslyfiltered through a 0.45-m filter) to a 50-mL volumetric flask.The specific gravity of the water or brine can be used toestimate the strontium content of the sample and, thereby, serveas a basis for selecting the aliquot

    29、 size that will contain about0.1 mg of strontium. Fig. 1 shows the relationship betweenstrontium concentration and specific gravity for some oilfieldbrines from the Smackover formation. The concentrations ofstrontium in the Smackover brines will not necessarily corre-late with the concentrations fou

    30、nd in other formations. There-fore, the user of this test method may find it necessary to drawa similar curve for brine samples taken from other formations.Add 5 mL of the lanthanum stock solution, dilute to volume,and aspirate. Calculate the approximate sample concentrationfrom the preliminary cali

    31、bration readings, and determine thealiquot size that will contain about 0.1 mg of strontium.10.4 Transfer equal aliquots containing about 0.1 mg ofstrontium to three 50-mL volumetric flasks. Add no strontiumstandard to the first flask. With a micropipet add 0.1 mg to thesecond and 0.2 mg to the thir

    32、d.10.5 Add 5 mL of the lanthanum solution to each of thethree flasks and dilute to volume. Aspirate and record theabsorbance readings for each sample.5Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For Suggestions on the testing of reagents not

    33、listed by the American Chemical Society, see Annual Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.TABLE 1 Compositions of Artificial Brine SamplesSample No.g/L1 234S

    34、r 0.060 0.100 1.600 2.100NaCl 24.0 170.0 80.0 200.0KCl 0.5 2.0 1.5 3.0KBr 1.0 2.0 2.0 2.0KI 0.1 0.5 0.5 1.0CaCl21.5 3.0 2.0 5.0MgCl24.5 5.0 2.0 1.0BaCl20.05 1.0 0.5 0.5TABLE 2 Determination of Precision and Bias of Strontium IonAmountAdded,mg/LAmountFound,mg/LSOST6 BiasStatisticallySignificant(95 %C

    35、onfidenceLevel)60 63.48 2.96 8.49 + 5.8 yes100 99.5 4.12 11.84 0.5 no1600 1665.6 54.87 157.3 + 4.1 no2100 2167.2 71.12 203.9 + 3.2 noD 3352 08211. Calculation11.1 Calculate the concentration of strontium ion in theoriginal sample in milligrams per litre as follows:Strontium concentration, mg/L 5V1As

    36、3 Cstd!V2Astd2 As!where:V1= volume of the diluted samples, mL,V2= volume of the original sample, mL,As= absorbance of dilute sample,Astd= absorbance of one of the standard additions, andCstd= concentration of the same standard addition as Astd,mg/L.Since there are two standard additions, calculate f

    37、or each andaverage the two results.12. Precision and Bias612.1 The precision of the test method within its designatedrange may be expressed as follows:St5 0.0929X 1 2.596So5 0.0324X 1 0.901whereSt= overall precision,So= single-operator precision, andX = concentration of strontium determined, mg/L.6S

    38、upporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR: D191022.FIG. 1 Relationship of the Concentration of Strontium in Some Oilfield Brines to Specific GravityD 3352 08312.2 The bias of the test method determined from recoveriesof know

    39、n amounts of strontium in a series of preparedstandards are given in Table 2.NOTE 1The above precision and bias estimates are based on aninterlaboratory study on four artificial brine samples containing variousamounts of strontium and interfering ions as shown in Table 1. Oneanalyst in each of three

    40、 laboratories and two analysts in each of sixlaboratories performed duplicate determinations on each of two days.Practice D 2777 was used in developing these precision and bias esti-mates.12.3 Precision and bias for this test method conforms toPractice D 277777, which was in place at the time ofcoll

    41、aborative testing. Under the allowances made in 1.4 ofD 277706, these precision and bias data do meet existingrequirements for interlaboratory studies of Committee D19 testmethods.13. Quality Control13.1 In order to be certain that analytical values obtainedusing these test methods are valid and acc

    42、urate within theconfidence limits of the test, the following QC procedures mustbe followed when analyzing strontium.13.2 Calibration and Calibration Verification13.2.1 Analyze at least three working standards containingconcentrations of strontium that bracket the expected sampleconcentration, prior

    43、to analysis of samples, to calibrate theinstrument.13.2.2 Verify instrument calibration after standardization byanalyzing a standard at the concentration of one of thecalibration standards. The absorbance shall fall within4%ofthe absorbance from the calibration. Alternately, the concen-tration of a

    44、mid-range standard should fall within 615 % of theknown concentration.13.2.3 If calibration cannot be verified, recalibrate theinstrument.13.3 Initial Demonstration of Laboratory Capability13.3.1 If a laboratory has not performed the test before, or ifthere has been a major change in the measurement

    45、 system, forexample, new analyst, new instrument, etc., a precision andbias study must be performed to demonstrate laboratorycapability.13.3.2 Analyze seven replicates of a standard solutionprepared from an Independent Reference Material containing amidrange concentration of strontium. The matrix an

    46、d chemis-try of the solution should be equivalent to the solution used inthe collaborative study. Each replicate must be taken throughthe complete analytical test method including any samplepreservation and pretreatment steps. The replicates may beinterspersed with samples.13.3.3 Calculate the mean

    47、and standard deviation of theseven values and compare to the acceptable ranges of bias in12.1. This study should be repeated until the recoveries arewithin the limits given in 12.1. If a concentration other than therecommended concentration is used, refer to Practice D5847for information on applying

    48、 the F test and t test in evaluatingthe acceptability of the mean and standard deviation.13.4 Laboratory Control Sample (LCS)13.4.1 To ensure that the test method is in control, analyzea LCS containing a mid-range concentration of strontium witheach batch or ten samples. If large numbers of samples

    49、areanalyzed in the batch, analyze the LCS after every ten samples.The LCS must be taken through all of the steps of the analyticalmethod including sample preservation and pretreatment. Theresult obtained for the LCS shall fall within 615 % of theknown concentration.13.4.2 If the result is not within these limits, analysis ofsamples is halted until the problem is corrected, and either allthe samples in the batch must be reanalyzed, or the results mustbe qualified with an indication that they do not fall within theperformance criteria of the test method.13.5 Me


    注意事项

    本文(ASTM D3352-2008 Standard Test Method for Strontium Ion in Brackish Water Seawater and Brines.pdf)为本站会员(fuellot230)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开