欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D3335-1985a(2014) Standard Test Method for Low Concentrations of Lead Cadmium and Cobalt in Paint by Atomic Absorption Spectroscopy《使用原子吸收光谱法测定涂料中低含量铅 镉和钴的标准测试方法》.pdf

    • 资源ID:514584       资源大小:72.08KB        全文页数:4页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D3335-1985a(2014) Standard Test Method for Low Concentrations of Lead Cadmium and Cobalt in Paint by Atomic Absorption Spectroscopy《使用原子吸收光谱法测定涂料中低含量铅 镉和钴的标准测试方法》.pdf

    1、Designation: D3335 85a (Reapproved 2014)Standard Test Method forLow Concentrations of Lead, Cadmium, and Cobalt in Paintby Atomic Absorption Spectroscopy1This standard is issued under the fixed designation D3335; the number immediately following the designation indicates the year oforiginal adoption

    2、 or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1.

    3、 Scope1.1 This test method covers the determination of lead2contents between 0.01 and 5 %, cadmium contents between 50and 150 ppm (mg/kg), and cobalt contents between 50 and2000 ppm (mg/kg) present in the nonvolatile portion of liquidcoatings or contained in dried films. There is no reason tobelieve

    4、 that higher levels of all three elements could not bedetermined by this test method, provided that appropriatedilutions and adjustments in specimen size and reagent quan-tities are made.1.2 Only pigmented coatings were used for evaluating thistest method, but there is no reason to believe that varn

    5、ishes andlacquers could not be analyzed successfully, provided thatappropriate precautions are taken.1.3 This test method is not applicable to the determinationof lead in samples containing antimony pigments (low recov-eries are obtained).1.4 If lead is present in the sample to be analyzed in thefor

    6、m of an organic lead compound at a concentration greaterthan 0.1 %, small losses of lead may occur, resulting in slightlypoorer precision than shown in Section 12.1.5 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.6 This sta

    7、ndard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific hazardstatements

    8、are given in Section 7.2. Referenced Documents2.1 ASTM Standards:3D1193 Specification for Reagent WaterD2832 Guide for Determining Volatile and Nonvolatile Con-tent of Paint and Related Coatings3. Summary of Test Method3.1 The specimen of liquid coating or dried film is preparedfor analysis by dry a

    9、shing. The content of lead, cadmium, orcobalt of an acid extract of the ash is determined by atomicabsorption spectroscopy.4. Significance and Use4.1 The permissible level of heavy metals in certain coat-ings is specified by governmental regulatory agencies. This testmethod provides a fully document

    10、ed procedure for determininglow concentrations of lead, cadmium, and cobalt present inboth water and solvent-reducible coatings to determine com-pliance.5. Apparatus5.1 Atomic Absorption Spectrophotometer, consisting of anatomizer and either a single- or three-slot burner; gas pressureregulating and

    11、 metering devices for air and acetylene; lead,cadmium, and cobalt source lamps4with a regulated constant-current supply; a monochromator and associated optics; aphotosensitive detector connected to an electronic amplifier;and a readout device.1This test method is under the jurisdiction of ASTM Commi

    12、ttee D01 on Paintand Related Coatings, Materials, and Applications and is the direct responsibility ofSubcommittee D01.21 on Chemical Analysis of Paints and Paint Materials.Current edition approved July 1, 2014. Published July 2014. Originally approvedin 1974. Last previous edition approved in 2009

    13、as D3335 85a (2009). DOI:10.1520/D3335-85AR14.2Vandeberg, J. T., Swafford, H. D., and Scott, R. W., “Determination of LowConcentrations of Lead in Paint,” Journal of Paint Technology, Vol 47, No. 604,May 1975.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Custom

    14、er Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Both hollow cathode lamps and electrodeless discharge lamps have been foundsatisfactory for this purpose.Copyright ASTM International, 100 Barr Harbor

    15、Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States15.2 Muffle Furnace, capable of maintaining 500 6 10C.5.3 Crucibles, wide-form, porcelain, glazed inside and out-side except for the outside bottom surface, approximately30-mL capacity, 50-mm rim diameter and 31-mm height.55.4 Hot Pl

    16、ate, with variable surface temperature controlover the range from 70 to 200C.5.5 High-Silica Glass Beakers,6100 and 250-mL.5.6 Volumetric Flasks, 50, 100, and 1000-mL.5.7 Dropping Bottles,14 or 7 or 15-mL (12-oz) capacity.5.8 Glass or Disposable Syringes, 5 or 10-mL capacity.5.9 Pipets, 1, 2, 5, and

    17、 10-mL capacity.5.10 Paint Shaker.5.11 Paint Draw-Down Bar.6. Reagents6.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chem

    18、ical Society,where such specifications are available.7Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.6.2 Purity of WaterUnless otherwise indicated, referencesto water shall

    19、be understood to mean reagent grade waterconforming to Type II of Specification D1193.6.3 Ammonium Acetate Solution (50 % weight/volume)Dissolve 500 g of ammonium acetate (NH4C2H3O2) in waterand dilute to 1 L.6.4 Ammonium Acetate Diluting SolutionAdd 50 mL ofHNO3(sp gr 1.42) to 150 mL of 50 % weight

    20、/volumeammonium acetate solution and dilute to 1 L.6.5 Cadmium Standard Stock Solution (1 mg/mL)Dissolve 2.1032 g of cadmium nitrate (Cd(NO3)2)in10mLofwater, add 10 mL of HNO3(sp gr 1.42), and dilute to 1 L.6.6 Cobalt Standard Stock Solution (1 mg/mL)Dissolve4.9387 g of cobalt nitrate hexahydrate (C

    21、o(NO3)26H2O) in 10mL of water, add 10 mL of HNO3(sp gr 1.42), and dilute to 1L.6.7 Lead Standard Stock Solution (1 mg/mL)Dissolve1.5980 g of lead nitrate (Pb(NO3)2) in 10 mL of water, add 10mL of HNO3(sp gr 1.42), and dilute to 1 L.NOTE 110.00 mg/mL concentrations of cadmium, lead, silver andzinc ar

    22、e available as SRM 2121; and the same concentration of cobalt,copper, iron and nickel as SRM 2124 from: Office of Standard ReferenceMaterials, Room B-311, Chemistry Building, NIST, Washington, DC20234.6.8 Nitric Acid (sp gr 1.42)Concentrated nitric acid(HNO3).6.9 Nitric Acid (1+1)Add 1 volume of HNO

    23、3(sp gr 1.42)to 1 volume of water.7. Hazards7.1 Concentrated nitric acid is corrosive and may causesevere burns of the skin or eyes; the vapor is irritating tomucous membranes. Use care in handling this acidic substance.Refer to suppliers Material Safety Data Sheet.7.2 Use only a rubber bulb aspirat

    24、or for pipeting liquids.8. Calibration and Standardization8.1 Prepare 100-mL quantities of at least four standardsolutions bracketing the expected lead, cadmium, or cobaltconcentration in the sample to be tested. To suitable aliquots ofthe 1 mg/mL standard lead, cadmium, or cobalt solution, add 5mL

    25、of HNO3(sp gr 1.42) and 15 mL of 50 % ammoniumacetate solution. Dilute to 100 mL with water.8.2 Operational instructions for atomic absorption spectro-photometers vary with different models. Consult the manufac-turers literature for establishing optimum conditions for thespecific instrument used.8.3

    26、 Turn the instrument on and set the wavelength to the283.3-nm lead line, the 228.8-nm cadmium line, or the240.7-nm cobalt line. Apply the current recommended by themanufacturer to the lead, cadmium, or cobalt source lamp.Allow the instrument to warm up for about 15 min and set theslit width. Adjust

    27、the air and acetylene pressure or flow ratesand ignite the burner in accordance with the manufacturersinstructions.8.4 Aspirate water to rinse the atomizer chamber. Aspirate astandard solution and make any necessary readjustment ininstrument parameters to obtain maximum absorption.8.5 Aspirate each

    28、of the appropriate standard solutions andrecord the corresponding instrument readings. Aspirate waterbetween each standard.8.6 Construct a calibration curve on linear graph paper byplotting the absorbance versus concentration (micrograms permillilitre) for each standard solution. Alternatively, the

    29、calibra-tion results may be stored in the instrument, if so equipped, andreadings made directly in concentration.9. Procedure9.1 If the sample is a liquid coating, mix it untilhomogeneous, preferably on a mechanical shaker. Determinethe nonvolatile content in accordance with Guide D2832.5The sole so

    30、urce of supply of No. 25007 crucibles, known to the committee atthis time is Coors Manufacturer. If you are aware of alternative suppliers, pleaseprovide this information to ASTM International Headquarters. Your comments willreceive careful consideration at a meeting of the responsible technical com

    31、mittee,1which you may attend.6The sole source of supply of Vycor beakers, known to the committee at thistime is Corning Glass Co., Houghton Park, Corning, NY 14831. If you are aware ofalternative suppliers, please provide this information to ASTM Headquarters. Yourcomments will receive careful consi

    32、deration at a meeting of the responsibletechnical committee,1which you may attend.7Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Analar Standards for La

    33、boratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.D3335 85a (2014)29.2 Prepare at least two replicate specimens by weighing bydifference from a dropping bottle or syringe approximately

    34、2 to3 g of the mixed liquid coating, or by directly weighingapproximately 1 to2gofdried paint film, into a 30-mLporcelain crucible. Weigh to 0.1 mg.NOTE 2The specimen size called for will give a concentration ofapproximately 10 to 20 g/mL lead in the final diluted solution for paintscontaining appro

    35、ximately 500 ppm (mg/kg) lead, based on the solids. Ifthe material is estimated to contain more or less than 500 ppm lead, thequantity taken should be adjusted accordingly. In the event that signifi-cantly less than 500 ppm lead is expected, a 250-mL high-silica beakermay be used in place of the cru

    36、cible to accommodate specimen weights upto 10 g. The size specified will give a concentration of approximately 2 to4 g/mL cadmium in the final diluted solution for paints containingapproximately 100 ppm cadmium, based on the solids. The size specifiedwill give a concentration of approximately 10 to

    37、20 g/mL cobalt in thefinal diluted solution for paints containing approximately 500 ppm cobalt,based on the solids.NOTE 3Recover dried paint films from previously coated substrates(being careful not to remove any underlying material from the substrate)or prepare in the laboratory from liquid samples

    38、. For the laboratorypreparation, flow some of the well-mixed sample onto a clean glass plate.The use of a paint draw-down bar is recommended to obtain a uniform wetfilm thickness not exceeding 2 mils (50 m). Allow the film to dry in anoven at 105C for a minimum of 1 h. Scrape the dried film off the

    39、glassplate, preferably with a single-edge razor blade.9.3 Place the crucible (or beaker) containing the liquidcoating on a hot plate and slowly increase the temperature untilthe material is dried. With some types of coatings, an initialoven-drying at 105C may be necessary to remove solventswithout i

    40、ncurring losses due to spattering.9.4 When the specimen appears to be dry or when startingwith a dried film, gradually increase the temperature of the hotplate until the material chars.9.5 After charring is complete, place the container in apreheated muffle furnace and ash at 475 to 500C.NOTE 4Ashin

    41、g at temperatures in excess of 500C may result in theloss of some lead by volatilization.9.6 When the ashing appears to be complete (do not exceed1 to 2 h), remove the crucible or beaker from the muffle furnaceand allow it to cool to room temperature. Break up the ash intofine particles with a glass

    42、 stirring rod, leaving the rod with thecontainer through the filtering step.9.7 Add 10 mL of HNO3(1 + 1), taking care to avoid lossesdue to spattering in case the ash reacts vigorously with the acid.Heat carefully on a hot plate until 2 to 3 mL of solution remain.Add an additional 10 mLof HNO3(1 + 1

    43、) and continue heatingon the hot plate until less than 5 mL of the solution remains.9.8 Filter the solution through medium-porosity filter paperinto a 50-mL volumetric flask. If the filtrate is not clear, refilterthrough fine-porosity filter paper. Wash the container threetimes with 2.5 mL of hot am

    44、monium acetate solution (6.3),each time transferring the washings to the filter paper. Wash thefilter paper several times with water. Adjust the volume to 50mL with water and mix.9.9 Aspirate the test solution and determine the absorbancein the same manner in which the instrument was calibrated.Dete

    45、rmine the concentration of lead, cadmium, or cobalt inmicrograms per millilitre from the calibration curve. If theabsorbance is above the range covered by the calibration curve,dilute an aliquot of the sample solution to a suitable volumewith ammonium acetate diluting solution.NOTE 5For maximum accu

    46、racy, calibration and standardization(Section 8) should be completed just prior to aspirating the samplesolution.NOTE 6The method of standard additions may be used to improve theaccuracy of the analysis. This method is particularly recommended for usewith unknown samples where matrix effects may be

    47、potentially signifi-cant. For a detailed description of the procedure and calculations used inthe method of standard additions, consult a standard text on atomicabsorption spectroscopy or the instruction manual provided by theinstrument manufacturer.10. Calculation10.1 Calculate the mean concentrati

    48、on of lead, cadmium, orcobalt in the nonvolatile portion of the sample as follows:lead, cadmium or cobalt, ppm mg/kg! in nonvolatile (1)5C 3 F 35000!/NV 3 S!where:C = concentration of lead, cadmium, or cobalt in theaspirated specimen solution, (g/mL),F = dilution factor from 9.9 (volume diluted to/v

    49、olumeof aliquot),5000 = factor derived from multiplying the 50-mL volumeobtained in procedure in 9.8 by 100 (to convert NVused to a whole number) and 106(to obtain ppm),then dividing by 106(to convert grams of sample tog),NV = percent nonvolatile of paint sample (use 100 ifsample was a dried film), andS = sample, g.11. Report11.1 Report the lead, cadmium, or cobalt content of thenonvolatile content of the sample and whether the analysis wasconducted on a liquid coating or a dried film.12. Precision and Bias812.1 The precision estimates are based o


    注意事项

    本文(ASTM D3335-1985a(2014) Standard Test Method for Low Concentrations of Lead Cadmium and Cobalt in Paint by Atomic Absorption Spectroscopy《使用原子吸收光谱法测定涂料中低含量铅 镉和钴的标准测试方法》.pdf)为本站会员(tireattitude366)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开