欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D2663-2008 Standard Test Methods for Carbon Black&x2014 Dispersion in Rubber《橡胶中碳黑分散度的标准试验方法》.pdf

    • 资源ID:513270       资源大小:455.71KB        全文页数:13页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D2663-2008 Standard Test Methods for Carbon Black&x2014 Dispersion in Rubber《橡胶中碳黑分散度的标准试验方法》.pdf

    1、Designation: D 2663 08Standard Test Methods forCarbon BlackDispersion in Rubber1This standard is issued under the fixed designation D 2663; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in pare

    2、ntheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods cover the degree of dispersion ofcarbon black in rubber. Three test methods are described asfollows:SectionsTest Method AVisual I

    3、nspection 3-11Test Method BAgglomerate Count 12-23Test Method CMicroroughness Measurementwith Profilometer 24-34Test Method DMicroroughness Measurement with IFM 35-431.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This s

    4、tandard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.

    5、1 ASTM Standards:2D 3182 Practice for RubberMaterials, Equipment, andProcedures for Mixing Standard Compounds and Prepar-ing Standard Vulcanized SheetsD 4483 Practice for Evaluating Precision for Test MethodStandards in the Rubber and Carbon Black ManufacturingIndustries2.2 ASTM Adjuncts:Carbon Blac

    6、k Dispersion Standards3Carbon Black Dispersion Chart4TEST METHOD AVISUAL INSPECTION3. Scope3.1 Test Method A is a qualitative visual test method.Ratings are made against a set of standard photographs (Fig.1),3and the results are expressed on a numerical scale.This testmethod cannot be used for compo

    7、unds that contain fillers otherthan carbon black.4. Summary of Test Method4.1 The compound rubber is torn or cut to expose a freshsurface for examination by the eye, aided preferably by a handlens or a low-power binocular microscope. The dispersionlevel of the carbon black is compared against a seri

    8、es of fivephotographic standards and then rated numerically from 1(very low) to 5 (high) (see Fig. 1).5. Significance and Use5.1 Visual dispersion ratings correlate with certain impor-tant physical properties of the compound. A rating of 5indicates a state of dispersion developing near maximumproper

    9、ties, while a rating of 1 would indicate a state ofdispersion developing considerably depressed properties. Nor-mally, the visual dispersion ratings indicate the followinglevels of compound quality:Visual Dispersion Rating Classification4to5 High3 to 4 Intermediate2to3 Low1 to 2 Very low6. Apparatus

    10、6.1 Sharp Knife or Razor Blade.6.2 Hand Lens (103) or binocular microscope (10 to 203).6.3 Illuminator, microscopical-type.6.4 Knife Heater.6.5 Series of Photographic Standards, rating 1 to 5. Thesestandards give the following percent dispersion ratings by theAgglomerate Count Method:1These test met

    11、hods are under the jurisdiction of ASTM Committee D24 onCarbon Black and are the direct responsibility of Subcommittee D24.71 on CarbonBlack Testing in Rubber.Current edition approved Jan. 1, 2008. Published February 2008. Originallyapproved in 1967. Last previous edition approved in 2006 as D 2663

    12、06.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from ASTM International Headquarters. Order Adj

    13、unct No.ADJD266302. Original adjunct produced in 1967.4Available from ASTM International Headquarters. Order Adjunct No.ADJD266301. Original adjunct produced in 1967.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Visual Rating Black

    14、 Dispersed, %170283914965997. Test Specimen7.1 Vulcanized CompoundsUse a slab of rubber about2 mm in thickness. Tear it so that a fresh surface is exposed.The tear may be initiated by a small cut. The most nearly flatpart of the tear is used for rating.7.2 Unvulcanized CompoundsUnvulcanized rubber m

    15、aybe examined as follows:7.2.1 If the specimen contains curing agents, sheet it out andcure in a press to form a vulcanized slab about 2 mm inthickness. Mill and cure in accordance with Practice D 3182.Then proceed as in 7.1.FIG. 1 Carbon Black Dispersion StandardsVisual Analysis of Torn Vulcanizate

    16、sD26630827.2.2 If the specimen contains no curatives, add the appro-priate materials with a minimum of mixing. Then cure andproceed as above.7.2.3 If the specimen contains no curatives and a dispersionevaluation with no further mixing is required, the compoundmust first be compressed to remove most

    17、of the air holes. Toaccomplish this, press the rubber into a slab between thinsheets of plastic in a mold at a pressure of about 1.03 kPa for5 min at 105C. Care should be taken to avoid excessive flowduring this step. The surface to be examined is formed with asmooth cutting stroke using a sharp, ho

    18、t knife (a standard typeknife heater may be employed). The most nearly smooth andflat part of the cut surface is used for rating.8. Number of Tests8.1 Preferably more than one test (on different tears) shouldbe made for each specimen. If convenient, more than oneoperator should rate the samples.9. P

    19、rocedure9.1 Examine the prepared specimens under a hand lens orbinocular microscope (the latter being preferred), with obliqueillumination to accentuate surface detail. Keep the magnifica-tion and lighting conditions constant for all specimens.9.2 Compare the size and frequency of carbon agglomerate

    20、sin the specimens (showing up as surface bumps or depressions)to the photographic standards. Then assign the most closelymatched numerical rating to each compound being rated. Inborderline cases, use fractional ratings, for example, 312 wouldindicate a rating between 3 and 4. In cases of dissimilari

    21、ty inthe size and frequency of the agglomerates in the specimen andthose of the standards, the operator shall assign the rating thatin his judgment is most applicable. Certain compounds (forexample, NR and IR) are particularly prone to very small blackagglomerations which are difficult to resolve by

    22、 the VisualInspection Method. In instances of high agglomerate fre-quency, the surface of stocks of this type may show a generalroughness or fine pebbled appearance. Differences are bestresolved at somewhat higher magnification (for example, 203,binocular microscope). If at all possible, examine com

    23、poundsof this type also by the agglomerate count method, at least untilsufficient experience is gained to recognize dispersion differ-ences with the Visual Inspection Method.9.3 In comparing a series of different compounds, it is alsodesirable to rate the specimens side by side rather than one ata t

    24、ime. This use of a control compound is also advisable. Thisis best prepared by individual operators, since dispersionrequirements may vary greatly for different types of com-pounds. The control sample should represent a minimumacceptable dispersion level for the type of compound beingrated. Because

    25、it can be observed side by side with unknownsamples under identical conditions, a control compound ismore accurate than the photographic standards in discerningsmall deviations from what is considered the norm for aspecific type of compound. Prepare a fresh surface on thecontrol as often as necessar

    26、y to ensure cleanliness.10. Report10.1 Ratings:10.1.1 List all ratings, including those on any controlcompound, on the basis of the 1 to 5 scale defined by thestandard photographs. Use fractional ratings when necessary.10.1.2 Average the ratings on different specimens of thesame compound as well as

    27、the ratings of different operators.Report the final average values.10.2 Compound Identification:10.2.1 FormulationWhenever possible list the following:10.2.1.1 Carbon black, type and loading,10.2.1.2 Other fillers, type and loading,10.2.1.3 Polymer type, and10.2.1.4 Extender oil, type and loading.10

    28、.2.2 MixingDescribe the mixing of the compound interms of one or more of the following:10.2.2.1 Standard mixing procedure,10.2.2.2 Type of equipment,10.2.2.3 Masterbatch,10.2.2.4 Finished compound (vulcanized), and10.2.2.5 Finished compound (unvulcanized).11. Precision and Bias11.1 No statement is m

    29、ade about either the precision or thebias of Test Method A since the result is qualitative and notapplicable to statistical treatment.TEST METHOD BAGGLOMERATE COUNT12. Scope12.1 Test Method B is a quantitative test method. Dispersionis evaluated by measuring with a light microscope the percent-age a

    30、rea covered by black agglomerates in microtomed sec-tions of the compound. Since this test method involves directmeasurement, it is quantitative and more accurate than thevisual test method. The test is applicable to the analysis ofcarbon black dispersion in compounds that contain other fillers.13.

    31、Summary of Test Method13.1 The compounded rubber is microtomed into sectionssufficiently thin to permit observation of the carbon agglom-erates by transmitted light, with the aid of a light microscope.The total cross-sectional area of all agglomerates 5 m orlarger is counted, and from the known cont

    32、ent of carbon blackin the stock, the percentage of carbon black below the 5-msize is calculated and expressed as “Percentage of CarbonBlack Dispersed.”14. Significance and Use14.1 Certain important physical properties of the compoundare influenced significantly by the degree of carbon blackdispersio

    33、n within the compound (for example, tensile strengthand abrasion resistance). The correlation of these propertieswith the percentage dispersion determined by the AgglomerateCount Method approximates the following pattern for manytypes of black loaded rubber compounds:Dispersion, % ClassificationAbov

    34、e 99 Very high97 to 99 High95 to 97 Intermediate92 to 95 LowD2663083Below 92 Very low15. Apparatus15.1 MicrotomeA sledge-type microtome equipped withspecimen clamp and holder for glass knives. Steel knives mayalso be employed, according to the preference of the operator.15.2 Freezing Blocks, consist

    35、ing of a brass screw which isthreaded into an insulating block of TFE-fluorocarbon (Fig. 2).The TFE-fluorocarbon block shall be 28-mm square in crosssection and 40-mm high. The threaded part of the brass screwshall be 15 mm in diameter and shall extend into the center ofthe TFE-fluorocarbon block to

    36、 a depth of 34 mm. Coarse,expansion-type threads should be used to prevent splitting ofthe TFE-fluorocarbon when the mount is frozen. The head ofthe brass screw shall be 18 mm in diameter and shall extend3 mm above the TFE-fluorocarbon insulator. The top of thescrew head shall be cross-hatched with

    37、fine grooves to a depthof about 1 mm.15.3 MicroscopeAn optical microscope with binocularviewing (trinocular type if photomicrographs are desired) isrecommended. This should include a movable specimen stageand white light source with variable intensity. Lenses shouldinclude two 103 wide field eyepiec

    38、es and objectives in therange from 6 to 103. Taking into account microscope tubecorrections, objectives should be selected so that magnifica-tions in the range from 75 to 1003 are available. (Forphotomicrographs a 43 plane objective and a 103 periplanaticeyepiece are recommended.)15.4 Microscope Acc

    39、essoriesA 103 wide field eyepiececontaining a graticule that is 1 cm2in size and divided into10 000 small squares.15.5 Measuring LensA 73 measuring magnifier cali-brated down to 0.1 mm for measuring the swelling factor of themicrotome sections. A mechanical vernier stage can also beused for this pur

    40、pose.15.6 Glass Pliers and CutterWide-face glazier pliers anda wheel-type glass cutter are recommended for preparing glassknives.15.7 Sample DieTempered steel die for cutting out 3 by8-mm specimens.15.8 Sable Brushes (00).15.9 Dewar Flask, 2dm3(2-L) size (wide-mouth).15.10 Glass KnivesThe knives are

    41、 prepared from 50-mmwide strips of approximately 6-mm thick plate glass.15.11 Microscope Slides and Cover Glasses.16. Reagents and Materials16.1 Liquid Nitrogen.16.2 Water-Soluble Mucilage.16.3 Naphtha, boiling point range from about 113 to 144C.16.4 Xylene, boiling point range from 135 to 145C.17.

    42、Sampling17.1 VulcanizatesSpecimens may be cut from standardtest sheets (about 2-mm thick) or from pieces of actual curedarticles. Vulcanized samples must be employed because of thesolvent used to uncurl the thin sections. If pieces other than2-mm sheets are used, they should first be cut down to ath

    43、ickness of about 2 to 3 mm.17.2 Unvulcanized CompoundsFor rubbers of high unsat-uration (for example, OE-SBR, NR, and BR), dust small bits(enough subsequently to form buttons about 10 mm in diameterand about 2 to 3-mm deep) thoroughly with dicumyl peroxide.Cure in a button mold5under high pressure a

    44、t about 155C.OE-SBR rubbers require about 30 to 60-min cure. BR requiresabout 10 to 15-min cure. After cure, scrape off the excessperoxide from the sample surface and proceed with sectioningin the standard manner, taking care not to pare down below thecured surface layer.17.2.1 For IIR, satisfactory

    45、 surface cures can be obtainedwith a mixture of 1 part tetramethylthiuram disulfide (TMTD),1 part mercaptobenzothiazole (MBT), 1 part sulfur, and 5 partszinc oxide, with a cure of 1 h at 155C. Other alternativeapproaches for curing high unsaturation polymers withoutactually mixing in curatives are (

    46、1) high-energy radiation and(2) chemical treatment with sulfur monochloride. However,before using either of these latter methods, the stock should bepressed out to eliminate most of the air holes. Cure inaccordance with Practice D 3182.18. Test Specimen18.1 Cut out a rectangular specimen 8-mm long,

    47、3-mmwide, and approximately 2-mm deep. Use a cutting die, ifavailable. If a die is not used, the specimen length and widthshould be recorded using a measuring magnifier.18.2 Prepare one specimen block for each different com-pound to be examined.19. Preparation of Glass Knives19.1 Standard types of p

    48、late glass are suitable for makingknives. Thickness should be preferably about 6 mm. A largesheet of glass should first be repeatedly broken in half so thatit eventually is in 50-mm wide strips. Fracture in this manneris preferred over simply breaking off 50-mm sections one at atime. Uneven strains

    49、are encountered in the latter procedure,and irregularities may occur on the side faces on which theknife edge will be formed. Prior to fracture, it is also importantthat the glass be free of dirt. A wash in a liquid detergent isgenerally advisable.5A special mold containing several circular cavities that are approximately10 mm in diameter and 3 mm deep.FIG. 2 Brass Sample Mount and TFE-Fluorocarbon InsulatorD266308419.2 Using a fairly thick straightedge, score a straight line(perpendicular to the side faces) across the glass strip, 50 mmfrom the end. Ta


    注意事项

    本文(ASTM D2663-2008 Standard Test Methods for Carbon Black&x2014 Dispersion in Rubber《橡胶中碳黑分散度的标准试验方法》.pdf)为本站会员(周芸)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开