欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D565-1999(2013) Standard Test Method for Carbonizable Substances in White Mineral Oil《白色矿物油易碳化物的标准试验方法》.pdf

    • 资源ID:511890       资源大小:83.56KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D565-1999(2013) Standard Test Method for Carbonizable Substances in White Mineral Oil《白色矿物油易碳化物的标准试验方法》.pdf

    1、Designation: D565 99 (Reapproved 2013)Standard Test Method forCarbonizable Substances in White Mineral Oil1This standard is issued under the fixed designation D565; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last r

    2、evision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This test method covers white mineral oil (

    3、Mineral OilUSP and Light Mineral Oil NF) to determine whether itconforms to the standard of quality required for pharmaceuticaluse as defined by the United States Pharmacopeia and theNational Formulary, or the Food and Drug Administration.1.2 The values stated in SI units are to be regarded asstanda

    4、rd. No other units of measurement are included in thisstandard.1.2.1 ExceptionDimension requirements for the colorcomparator in Fig. 1 are in SI and inch-pound units.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of t

    5、he user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 6.2. Referenced Documents2.1 ASTM Standards:2D1193 Specification for Reagent Water2.2 Offcial Compendia:3

    6、United States PharmacopeiaCurrent EditionMonograph on Mineral OilNational FormularyCurrent EditionMonograph on Light Mineral Oil2.3 Government Document:421CFR 172.878 Food and Drug Administration Title3. Summary of Test Method3.1 The mineral oil is treated with concentrated sulfuric acid(H2SO4) unde

    7、r prescribed conditions and the resulting color iscompared with a reference standard to determine whether itpasses or fails the test.4. Significance and Use4.1 This test method is a means for ascertaining whetherpharmaceutical mineral oil conforms to the standards of theUnited States Pharmacopeia, t

    8、he National Formulary, and theFood and Drug Administration.5. Apparatus5.1 Test Tube, as shown in Fig. 1, of heat-resistant glassfitted with a well-ground glass stopper, the stopper and the tubebearing identical and indestructible numbers. The tube shall be140 6 2 mm in length and between 14.5 and 1

    9、5.0 mm inoutside diameter, and shall be calibrated at the 5 6 0.2 mL and10 6 0.2 mL liquid levels. The capacity of the tube withstopper inserted shall be between 13.6 and 15.6 mL. A rollededge can be provided for suspending the tube on the cover ofthe water bath.5.2 Water Bath, suitable for immersin

    10、g the test tube abovethe 10 mL line equipped to maintain a temperature of 100 60.5C. The bath shall be provided with a cover of any suitablematerial with holes approximately 16 mm in diameter throughwhich the test tubes can be suspended.5.3 Color Comparator, of a suitable type for observing thecolor

    11、 of the acid layer in comparison with the referencestandard color solution. The size and shape of the comparatorare optional, but the size and shape of the apertures shallconform to the dimensions prescribed in Fig. 1.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Prod

    12、ucts, Liquid Fuels, and Lubricantsand is the direct responsibility ofSubcommittee D02.06 on Analysis of Lubricants.Current edition approved Oct. 1, 2013. Published October 2013. Originallyapproved in 1940. Last previous edition approved in 2009 as D565 99 (2009)1.DOI: 10.1520/D0565-99R13.2For refere

    13、nced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from U.S. Pharmacopeial Convention, 12601 Twinbrook Parkway,R

    14、ockville, MD 20852.4Available from Standardization Documents Order Desk, DODSSP, Bldg. 4,Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States16. Reagents6.1 Purity of ReagentsReagent

    15、 grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.5Other grades may beused, provided it is first

    16、 ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.6.2 Purity of WaterUnless otherwise indicated, referencesto water shall be understood to mean distilled water or water ofequal purity conforming to Type III of Specificati

    17、on D1193.6.3 Cobaltous Chloride Solution (0.25 M)Prepare a solu-tion of hydrochloric acid (HCl) (WarningCauses burns.Vapor extremely irritating.) by mixing 30 mL of concentratedHCl with 1170 mL of water. Slowly add the acid to the water.Dissolve 65 6 1 g of cobaltous chloride hexahydrate(CoCl26H2O)

    18、in the HCl solution to make 1000 mL ofsolution. Using a pipet, transfer 5 mL of this solution to a 250mL iodine flask. Prepare a solution of sodium hydroxide(NaOH) ( WarningCorrosive. Can cause severe burns orblindness. Evolution of heat produces a violent reaction oreruption upon too rapid a mixtur

    19、e with water.) by mixing 5 gof NaOH with 20 mL of water. Add 15 mL of this NaOHsolution to the iodine flask. Add 5 mL of hydrogen peroxide(H2O2) (3 % v/v). Boil for 10 6 1 min, cool, and add2gofpotassium iodide (KI). Prepare a solution of H2SO4(WarningCauses burns. Vapor extremely irritating. Strong

    20、oxidizer.) by mixing 6 mL of H2SO4with 18 mL of water.Slowly add the acid to the water (see Note 1). Add 20 mL ofthis H2SO4solution to the flask.) When the precipitate hasdissolved, titrate the liberated iodine with 0.100 M sodiumthiosulfate (Na2S2O3) solution, using starch solution as anindicator.

    21、Each millilitre of Na2S2O3solution is equivalent to0.0238 g of CoCl26H2O. Adjust the final volume of CoCl2solution by the addition of HCl solution so that 1 mL contains59.5 mg of CoCl26H2O.NOTE 1This freshly prepared H2SO4solution will be hot. Allow tocool before continuing.6.4 Cupric Sulfate Soluti

    22、on (0.25 M)Prepare a solution ofHCl (Warningsee 6.3) by mixing 30 mL of concentratedHCl with 1170 mL of water. Slowly add the acid to the water.Dissolve 65 6 1 g of cupric sulfate pentahydrate(CuSO45H2O) in enough HCl solution to make 1000 mL ofsolution. Using a pipet, transfer 10 mL of the solution

    23、 to a250-mL iodine flask, add 40 mL of water. Prepare a 6M aceticacid (CH3COOH) (WarningCorrosive. Combustible. Vaporirritating.) solution by mixing 353 mL of concentratedCH3COOH with 1000 mL of water. Slowly add the acid to thewater.Add 4 mL of 6M CH3COOH,3gofKland5mLofHClto the flask. Titrate the

    24、liberated iodine with 0.100 M Na2S2O3solution, using starch solution as an indicator. Each millilitre ofNa2S2O3solution is equivalent to 0.0250 g of CuSO45H2O.Adjust the final volume of the CuSO4solution by the additionof diluted HCl solution so that 1 mL contains 62.4 mgCuSO45H2O.6.5 Ferric Chlorid

    25、e Solution (0.166 M)Prepare a solutionof HCl (Warningsee 6.3) by mixing 30 mL of concentratedHCl with 1170 mL of water. Dissolve 55 6 1 g of ferricchloride hexahydrate (FeCl36H2O) in enough HCl to make1000 mL of solution. Using a pipet, transfer 10 mL of thissolution into a 250-mL iodine flask, add

    26、15 mL water,3gKIand 5 mL HCl, and allow the mixture to stand for 15 6 1 min.Dilute with 100 mL of water and titrate the liberated iodinewith 0.100 M Na2S2O3solution, using starch solution as anindicator. Each millilitre of Na2S2O3solution is equivalent to0.0270 g of FeCl36H2O. Adjust the final volum

    27、e of FeCl3solution by the addition of the HCl solution so that 1 mLcontains 45.0 mg of FeCl36H2O.5Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For Suggestions on the testing of reagents notlisted by the American Chemical Society, see Annual S

    28、tandards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.FIG. 1 Color Comparator for Carbonizable Substances in Liquid PetrolatumD565 99 (2013)26.6 The solutions prepared in 6.3

    29、 6.5 may be prepared indifferent quantities, provided the ratios of components areequivalent.6.7 Colorimetric Reference Standard SolutionPrepare areference standard pale amber solution for color comparison bymixing together 1.5 parts of CoCl2solution, 3.0 parts of theFeCl3solution, and 0.5 parts of

    30、the CuSO4solution. Measure5 mL of this mixture into a test tube as specified in 5.1. Thispale amber reference standard shall then be overlaid with 5 mLof white mineral oil.6.8 Sulfuric Acid (94.7 6 0.2 %)The H2SO4shall benitrogen-free when analyzed in accordance with the followingprocedure: Dilute a

    31、 small amount of the acid with an equalvolume of water and superimpose 10 mL of the cooled liquidupon diphenylamine solution (1 g of diphenylamine in 100 mLof concentrated H2SO4). A blue color should not appear at thezone of contact within 1 h. This test detects as little as0.0002 % nitric acid (HNO

    32、3).7. Procedure7.1 Clean a test tube with a chromic acid (H2CrO4) cleaningsolution (WarningCauses severe burns. A recognized car-cinogen. Strong oxidizer.), or use a nonchromium containing,strongly oxidizing cleaning solution.7.2 Fill the test tube to the 5 mL mark with H2SO4(94.7 60.2 %). Then add

    33、the oil to be tested to the 10-mL mark, insertthe stopper loosely, and place the test tube in position in thewater bath at 100 6 0.5C.7.3 After the test tube has been in the water bath for 30 s,loosen the stopper sufficiently to release any pressure andreinsert, remove the test tube from the bath qu

    34、ickly, hold witha finger over the stopper, and give three vigorous, verticalshakes over an amplitude of about 127 mm, shaking the testtube quickly and at a rate corresponding to 5 shakes/s. (Ashaking machine may be employed provided the results thatcan be obtained agree with those obtained by the pr

    35、escribedmanual agitation.) Repeat every 30 s. Do not keep the test tubeout of the bath longer than 3 s for each shaking period.7.4 At the end of 10 min from the time the test tube was firstplaced in the bath, remove the test tube and allow to stand inthe room for not less than 10 min nor more than 3

    36、0 min.Observe and record any discoloration of the oil layer. Place thetest tube in the color comparator, and compare the acid layerwith 5 mL of the standard colorimetric solution and 5 mL ofwhite mineral oil in a test tube that has been shaken vigorouslyfor 10 s and allowed to stand just long enough

    37、 for the contentsto separate into two layers.8. Interpretation of Results8.1 White mineral oil shall be reported as passing the testonly when the oil layer shows no change in color (see Note 2)and when the acid layer is not darker than the referencestandard colorimetric solution.NOTE 2A bluish haze

    38、or a slight pink or yellow color in the oil layershould not be interpreted as a change in color.8.2 If the oil layer is discolored or if the acid layer is darkerthan the reference standard colorimetric solution, white min-eral oil shall be reported as not passing the test.9. Precision and Bias9.1 No

    39、 statement is made about either the precision or biasof this test method since the result merely states whether thereis conformance to the criteria for success specified in theprocedure.10. Keywords10.1 carbonizable substances; mineral oilASTM International takes no position respecting the validity

    40、of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject t

    41、o revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters.

    42、 Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is

    43、copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).D565 99 (2013)3


    注意事项

    本文(ASTM D565-1999(2013) Standard Test Method for Carbonizable Substances in White Mineral Oil《白色矿物油易碳化物的标准试验方法》.pdf)为本站会员(syndromehi216)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开