欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM D1993-2003(2013)e1 Standard Test Method for Precipitated Silica-Surface Area by Multipoint BET Nitrogen Adsorption《采用多点BET氮吸收法测定析出的硅表面面积的标准试验方法》.pdf

    • 资源ID:510806       资源大小:69.25KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM D1993-2003(2013)e1 Standard Test Method for Precipitated Silica-Surface Area by Multipoint BET Nitrogen Adsorption《采用多点BET氮吸收法测定析出的硅表面面积的标准试验方法》.pdf

    1、Designation: D1993 03 (Reapproved 2013)1Standard Test Method forPrecipitated Silica-Surface Area by Multipoint BET NitrogenAdsorption1This standard is issued under the fixed designation D1993; the number immediately following the designation indicates the year oforiginal adoption or, in the case of

    2、revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorially corrected 2.1 and related references in February 2016.1. Scope1.1 This test method covers a

    3、 procedure which is used tomeasure the surface area of precipitated hydrated silicas by theconventional Brunauer, Emmett, and Teller (BET)2theory ofmultilayer gas adsorption behavior using multipointdeterminations, similar to that used for carbon black in TestMethod D6556. This test method specifies

    4、 the sample prepa-ration and treatment, instrument calibrations, required accuracyand precision of experimental data, and calculations of thesurface area results from the obtained data.1.2 This test method is used to determine the nitrogensurface area of precipitated silicas with specific surface ar

    5、eas inthe range of 1 to 50 hm2/kg (10 to 500 m2/g).1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibi

    6、lity of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. The minimumsafety equipment should include protective gloves, sturdy eyeand face protection, and means to deal safely with accidentalmercur

    7、y spills.2. Referenced Documents2.1 ASTM Standards:3D1799 Practice for Carbon BlackSampling PackagedShipmentsD1900 Practice for Carbon BlackSampling Bulk Ship-mentsD4483 Practice for Evaluating Precision for Test MethodStandards in the Rubber and Carbon Black ManufacturingIndustriesD6556 Test Method

    8、 for Carbon BlackTotal and ExternalSurface Area by Nitrogen Adsorption3. Significance and Use3.1 This test method is used to measure the surface area ofprecipitated, hydrated silicas that is available to the nitrogenmolecule using the multipoint (B. E. T.) method.3.2 Solids adsorb nitrogen and, unde

    9、r specific conditions,the adsorbed molecules approach a monomolecular layer. Thequantity in this hypothetical monomolecular layer is calculatedusing the BET equation. Combining this with the area occupiedby the nitrogen molecule yields the total surface area of thesolid.3.3 This test method measures

    10、 the estimated quantity ofnitrogen in the monomolecular layer by adsorption at liquidnitrogen temperature and at several (at least five) partialpressures of nitrogen.3.4 Before a surface area determination can be made it isnecessary that the silica be stripped of any material which mayalready be ads

    11、orbed on the surface. The stripping of adsorbedforeign material eliminates two potential errors. The first erroris associated with the weight of the foreign material. Thesecond error is associated with the surface area that the foreignmaterial occupies.4. Apparatus4.1 Commercial instruments are avai

    12、lable4for the measure-ment of nitrogen surface area by the multipoint BET method.These may be of the “flowing gas” or the “vacuum-volumetric”type.1This test method is under the jurisdiction of ASTM Committee D11 on Rubberand is the direct responsibility of Subcommittee D11.20 on Compounding Material

    13、sand Procedures.Current edition approved Nov. 1, 2013. Published January 2014. Originallyapproved in 1991. Last previous edition approved in 2008 as D1993 03 (2008).DOI: 10.1520/D1993-03R13E01.2Brunauer, Emmett, and Teller, Journal of the American Chemical Society,Vol60, 1938, p. 309.3For referenced

    14、 ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Commercial automated instruments found satisfactory may be obtained fromMic

    15、romeritics Instrument Corporation, One Micromeritics Drive, Norcross, GA300931877, website: , and Quantachrome Instruments,1900 Corporate Drive, Boynton Beach, FL 33426, website: www.quantachrome-.com.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

    16、 United States1NOTE 1Automated instruments will provide results equivalent to theprocedure described herein if careful calibration of the instrument,equivalent sample preparation, adherence to manufacturers instructionfor instrument operation, and equivalent data handling and calculationsare perform

    17、ed.4.2 Sample Cells, and other peripheral equipment as recom-mended by the manufacturer for the instrument used.4.3 Balance, Analytical, with 0.1-mg sensitivity.4.4 Heating Mantles, or other sample preparation station,capable of maintaining a temperature of 160 6 5C on thesample.5. Reagents5.1 Liqui

    18、d Nitrogen.5.2 Nitrogen Gas, cylinder, or other source of prepurifiednitrogen gas as specified by the manufacturer of the instrument.5.3 Helium Gas, cylinder, or other source of prepurifiedhelium gas, as specified by the manufacturer of the instrument.6. Standard Reference Silicas6.1 None RequiredTh

    19、is test method is used to determinesurface area of candidate silicas. Reference silicas are avail-able5for checking agreement with data obtained in the inter-laboratory test used in preparation of this test method.7. Sampling7.1 No separate practice for sampling silicas is available.However, samples

    20、 may be taken in accordance with PracticeD1799 or D1900, whichever is appropriate.8. Sample Preparation ProcedureAutomated Instrument8.1 Weigh (to 0.1 mg) a clean, dry, degassed sample tubewith stopper and filler rod if required. Record the mass.8.2 Transfer a sample of silica to be tested so that t

    21、he sampletube contains approximately 50 m2of silica surface area (seeNote 2 and 8.2.1).NOTE 2If the silica sample contains more than about 6 % moisture, itmay be dried at 110C to 2 to 6 % moisture. A very dry silica (less than1 % moisture) is difficult to transfer due to static charge buildup.8.2.1

    22、If the surface area of the silica is unknown, assume asurface area of 7.5 hm2/kg and weigh out approximately 0.5 gof sample.8.3 Place the sample assembly (with sample) at the degasstation. Degas the sample in accordance with manufacturersinstructions.8.3.1 The silica must be completely degassed. Whi

    23、lesamples at normal moisture and moderate surface area arecompletely degassed in1hat160C, the inability to holdpressure (in a vacuum-type instrument), moisture condensationin the cold part of the sample cell, or poor reproducibility areindications that longer degassing times may be required. Donot c

    24、hange the degassing temperature.8.4 Set the heating for the desired temperature of 160C,and degas in accordance with manufacturers procedure.NOTE 3To obtain 160C sample temperature, a higher temperature onthe heater may be necessary. The heater temperature and set pointnecessary may be determined by

    25、 way of a temperature sensor in thesample, for example, a thermometer, during a trial run.8.5 Remove from heat and allow sample and sample tube tocool to room temperature. If moisture is present at the tubeneck after 1 h, abort run and pre-dry sample at 110C inaccordance with Note 2 and repeat sampl

    26、e preparation proce-dure. When cool, remove the sample tube from the degas portin accordance with manufacturers procedure, stopper, weigh,and record the mass to 0.1 mg. Calculate degas sample weightusing weight from 8.1 as tare. The degassed sample weight isinserted into program of calculations.9. M

    27、easurement ProcedureAutomated Instruments9.1 For automated system insert prepared tube containingsample into isothermal jacket (if called for in manufacturersprocedure), install on analysis port, and insert run conditions/report options into computer program as required.9.2 For automated system when

    28、 partial pressures arerequested, select 0.05 and 0.2 and three points between 0.05and 0.2. Begin run.9.2.1 Be sure to input degassed weight of sample obtainedin 8.5.9.3 When measurements are complete and sample tube haswarmed to room temperature, dry the sample tube, remove itfrom the instrument, an

    29、d seal it with its stopper.10. Calculations10.1 For automated instruments, software automaticallycalculates results for the chosen reports.NOTE 4If the correlation coefficient calculated for the data analysis islow, see Test Method D6556 for a methodology to improve the correlationby discarding one

    30、or more points.11. Report11.1 Report the following information:11.1.1 Proper sample identification.11.1.2 Number of data points used to obtain the results.11.1.3 The nitrogen surface area of the sample reported tothe nearest 0.01 hm2/kg.12. Precision and Bias12.1 This precision and bias section has

    31、been prepared inaccordance with Practice D4483, which should be referred tofor terminology and other statistical calculation details.12.2 A Type 1 interlaboratory precision was evaluated inApril 1990. Both repeatability and reproducibility are short-term. Duplicate determinations were made on each o

    32、f the testsilicas on each of two days, a few days apart. A test result, asspecified by this test method, is obtained on one measurementof the surface area.5Precipitated silica samples are available from Forcoven Products, Inc., 123Martin Drive, Porter, TX 77365. Samples are available in three surfac

    33、e areas: A,13.8; B, 5.7; and C, 16.8 hm2/kg.D1993 03 (2013)1212.3 Three different precipitated silicas were used, repre-senting low (less than 10.0 hm2/kg), medium (10.0 to 16.0hm2/kg) and high (greater than 16.0 hm2/kg). These weretested in five laboratories. The tests included the classicalvacuum

    34、rack (one laboratory) and the automatic instruments(four laboratories).12.4 The results of the precision calculations for repeatabil-ity and reproducibility are given in Table 1 for each of thesilicas evaluated.12.5 Repeatability, r, and reproducibility, R, vary over therange of surface areas measur

    35、ed.12.6 RepeatabilityThe repeatability, r, of this test methodhas been established as the appropriate value tabulated in Table1. Two single test results, obtained with this test method on thesame instrument and with the same operator, that differ bymore than this tabulated r (for any given mean surf

    36、ace area)must be considered as derived from different or nonidenticalsample populations.12.7 ReproducibilityThe reproducibility, R, of this testmethod has been established as the appropriate value tabulatedin Table 1. Two single test results obtained with this testmethod, in two different laboratori

    37、es, that differ by more thanthe tabulated R (for any given mean surface area) must beconsidered as derived from different or nonidentical samplepopulations.12.8 Repeatability and reproducibility expressed as a per-cent of the mean surface area, (r) and (R), have equivalentapplication statements as a

    38、bove for r and R. For the (r) and (R)statements, the difference in the two single test results isexpressed as a percent of the arithmetic mean of the two testresults.12.9 BiasIn test method terminology, bias is the differencebetween an average surface area and the reference (or true)surface area. Re

    39、ference surface areas do not exist for this testmethod since the surface area is exclusively defined by this testmethod. Bias, therefore, cannot be determined.13. Keywords13.1 nitrogen adsorption surface area; precipitated hydratedsilica; silicas; surface areaASTM International takes no position res

    40、pecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This

    41、standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM Intern

    42、ational Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown be

    43、low.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555

    44、 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http:/ 1 Type 1 Precision of Surface Area of SilicaSilicaMean,hm2/kgWithin Laboratory Between LaboratoriesSr,hm2/kgr,hm2/kg(r),Sr,hm2/kgR,hm2/kg(R),A 13.78 0.141 0.399 2.9 0.148 0.419 3.0B 5.67 0.079 0.223 3.9 0.094 0.267 4.71C 16.78 0.201 0.569 3.4 0.377 1.067 6.4D1993 03 (2013)13


    注意事项

    本文(ASTM D1993-2003(2013)e1 Standard Test Method for Precipitated Silica-Surface Area by Multipoint BET Nitrogen Adsorption《采用多点BET氮吸收法测定析出的硅表面面积的标准试验方法》.pdf)为本站会员(visitstep340)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开