欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C914-1995(2004) Standard Test Method for Bulk Density and Volume of Solid Refractories by Wax Immersion《用浸蜡法测定固体耐火材料的松密度和体积的标准试验方法》.pdf

    • 资源ID:508777       资源大小:29.01KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C914-1995(2004) Standard Test Method for Bulk Density and Volume of Solid Refractories by Wax Immersion《用浸蜡法测定固体耐火材料的松密度和体积的标准试验方法》.pdf

    1、Designation: C 914 95 (Reapproved 2004)Standard Test Method forBulk Density and Volume of Solid Refractories by WaxImmersion1This standard is issued under the fixed designation C 914; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision,

    2、 the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the basic procedure for deter-mining bulk density and volume of refractory shape

    3、s. This testis applicable to all refractory shapes or monoliths, burned orunburned, independent of composition or forming method,including materials that slake and hydrate. It is particularlysuitable for determining bulk density and volume of complexshapes after forming, since results may be obtaine

    4、d in a matterof minutes.1.2 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prio

    5、r to use. For a specifichazard statement, see Note 2.2. Significance and Use2.1 This test method may be used to quickly determinevolume and bulk density of a refractory of any shape, providedit has sufficient structural integrity to permit handling. Thus itmay be used on unfired or fired, strong or

    6、friable shapes.2.2 Since the test may be performed quickly, it has foundapplication as manufacturing in-process control as well as incharacterizing finished refractory products. Also it may be usedto examine specimens after other test or service exposure.3. Apparatus3.1 Paraffn Wax, fully refined, t

    7、hat has a known constantdensity, K, that does not change after repeated melting andcooling cycles.NOTE 1The paraffin waxes generally used are commercially availableand have density values in the range 0.87 to 0.91 g/cm3. Also, these waxesmelt at approximately 135F (57C).3.2 Wax-Melting Container, us

    8、ed to melt the wax but shouldnot allow the wax to overheat. A container heated by hot water,preferably thermostatically controlled, is satisfactory. The waxshould be heated to only slightly above the melting point toavoid flashing of the wax vapors and to permit quickly forminga uniform surface coat

    9、ing of wax.NOTE 2Caution: Vapors given off by molten wax ignite spontane-ously at above 400F (205C) and should not be allowed to come incontact with the heating element or open flame.3.3 Balance, capable of determining the weights of thespecimens to four significant figures. Thus, specimens weigh-in

    10、g from 100 to 999 g should be weighed to one decimal place,those from 10 to 99 g should be weighed to two decimal places,and so forth.4. Sampling4.1 At least five representative specimens should be chosenof the refractory to be characterized. These may be wholeshapes or broken pieces, depending on t

    11、he purpose of the test.5. Procedure5.1 Preparation of SpecimensThe test specimens shall bedried to a constant weight by heating to 220 to 230F (105 to110C) to remove entrapped moisture, which would affect thebulk density determination. This drying process may be omit-ted when specimens are known to

    12、be dry or when it is desiredto make density determinations on moisture-containing speci-mens, such as brick shapes, immediately after forming.5.2 Initial Weight,WDetermine the initial weight, W,ofeach test specimen in grams to four significant figures.5.3 Coating the Test Specimen:5.3.1 Coat the spe

    13、cimen with wax by dipping the specimeninto the container of melted wax. The coating is easily appliedby holding one end of the specimen and immersing one half totwo thirds of it. Then, hold the waxed end, and immerse theunwaxed portion plus a small overlap into the wax to providea complete coating.5

    14、.3.2 Take care not to entrap air bubbles under the wax. Iffound, press these bubbles out so the wax conforms exactly tothe surface of the specimen. Close holes in the wax coating byadditional dipping in wax so the surface can be completelysealed.5.4 Wax-Coated Weight,PDetermine the weight of thewax-

    15、coated specimen, P, in grams to four significant figures.5.5 Suspended Weight, S:1This test method is under the jurisdiction of ASTM Committee C08 onRefractories and is the direct responsibility of Subcommittee C08.03 on PhysicalTests and Properties.Current edition approved Sept. 1, 2004. Published

    16、October 2004. Originallyapproved in 1979. Last previous edition approved in 1999 as C 914 95 (1999).1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.5.1 Determine the weight of the wax-coated specimensuspended in water, S, in grams

    17、to four significant figures.5.5.2 Previously counterbalance the balance with the wireor other device used to suspend the specimen in place, andimmerse in water to the same depth as used when the refractoryspecimen is in place. This weighing may be accomplished bysuspending the specimen in a loop or

    18、halter of AWG Gage 22(0.643-mm) copper wire hung from one arm of the balance.6. Calculation6.1 Volume, V:6.1.1 Obtain the volume, V1, of the test specimens (includ-ing the wax) in cubic centimetres as follows:V15 P 2 S (1)NOTE 3This assumes that 1 cm3of water weighs 1 g. This is truewithin 3 parts i

    19、n 1000 for water at room temperature.6.1.2 Obtain the volume, V2, of the wax coating on the testspecimen in cubic centimetres as follows:V25 P W!/K (2)where:K = density of the wax, g/cm3.6.1.3 Obtain the volume, V, of the test specimen by sub-tracting the volume of the wax coating from the total vol

    20、umeas calculated in 6.1.1 as follows:V 5 V12 V2(3)6.2 Bulk Density,BThe bulk density, B, of a specimen ingrams per cubic centimetre is the quotient of its initial weightdivided by volume of the test specimen, excluding the volumeof wax. Calculate B as follows:B 5 W/V (4)7. Report7.1 For each propert

    21、y, report the average of the valuesobtained with at least five specimens, and preferably, theindividual values as well.7.2 Report the bulk density results to two decimal places.8. Precision and Bias8.1 Volume Measurement:8.1.1 Interlaboratory Test ProgramInterlaboratory studywas conducted by five la

    22、boratories using three replications andtwo duplicate runs on the same specimen. The specimen was212 in. (63.5 mm) series 9 in. (229 mm) straights of oxynitridebonded silicon carbide cut into quarter bricks approximately4.5 by 2.25 by 1.5 in. (114 by 57 by 38 mm).8.1.2 Precision:8.1.2.1 Repeatability

    23、 Two test results, each composed offive specimens from one laboratory, should be consideredsignificantly different at the 95 % confidence level, if theirdifference exceeds the Repeatability Interval, Ir, for the grandaverage in Table 1.8.1.2.2 Reproducibility Two test results, each composedof five s

    24、pecimens from two laboratories, should be consideredsignificantly different at the 95 % confidence level, if theirdifference exceeds the Reproducibility Interval, IR, for thegrand average in Table 1.8.1.3 BiasNo justifiable statement can be made sincethere is no accepted reference material and the t

    25、rue values ofvolume cannot be established by an accepted referencemethod.8.2 Bulk Density Measurement:8.2.1 Interlaboratory Test ProgramInterlaboratory studywas conducted by five laboratories using three replications andtwo duplicate runs on the same specimen. The specimen wasTABLE 1 Volume Measurem

    26、entPrecisionStandard DeviationMaterial Average Within Laboratories, Sr Between Laboratories, SL Repeatability Interval, Ir Reproducibility Interval, IRA 397.17 0.695 0.377 1.965 1.066B 408.51 0.592 0.245 1.674 0.693C 408.82 0.859 0.307 2.429 0.868D 410.56 0.801 0.370 2.265 1.046E 411.80 0.885 0.494

    27、2.503 1.397Grand Average 407.37 0.766 0.359 2.167 2.933Relative PrecisionCoefficient of VarianceMaterial Average Within Laboratories,%VrBetween Laboratories,%VLRelative RepeatabilityInterval, % IrRelative ReproducibilityInterval, % IRA 397.17 0.175 0.095 0.495 0.269B 408.51 0.145 0.060 0.410 0.170C

    28、408.82 0.210 0.075 0.594 0.212D 410.56 0.195 0.090 0.552 0.255E 411.80 0.215 0.120 0.608 0.339Grand Average 407.37 0.188 0.088 0.532 0.249C 914 95 (2004)2212 in. (63.5 mm) series 9 in. (229 mm) straights of oxynitridebonded silicon carbide cut into quarter bricks approximately4.5 by 2.25 by 1.5 in.

    29、(114 by 57 by 38 mm).8.2.2 Precision:8.2.2.1 Repeatability Two test results, each composed offive specimens from one laboratory, should be consideredsignificantly different at the 95 % confidence level, if theirdifference exceeds the Repeatability Interval, Ir, for the grandaverage in Table 2.8.2.2.

    30、2 Reproducibility Two test results, each composedof five specimens from two laboratories, should be consideredsignificantly different at the 95 % confidence level, if theirdifference exceeds the Reproducilibity Interval, IR, for thegrand average in Table 2.8.2.3 BiasNo justifiable statement can be m

    31、ade sincethere is no accepted reference material and the true values ofbulk density cannot be established by an accepted referencemethod.9. Keywords9.1 bulk density; refractory shapes; solid refractories; vol-ume; wax immersionASTM International takes no position respecting the validity of any paten

    32、t rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision a

    33、t any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your commen

    34、ts will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted

    35、by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mai

    36、l); or through the ASTM website(www.astm.org).TABLE 2 Bulk Density MeasurementPrecisionStandard DeviationMaterial Average Within Laboratories,SrBetween Laboratories,SLRepeatabilityInterval, IrReproducibilityInterval, IRA 2.585 0.0033 0.0066 0.0094 0.0210B 2.569 0.0033 0.0026 0.0094 0.0120C 2.619 0.0

    37、041 0.0009 0.0115 0.0120D 2.622 0.0033 0.0020 0.0094 0.0110E 2.599 0.0024 0.0024 0.0067 0.0094Grand Average 2.599 0.0033 0.0029 0.0093 0.0131Relative PrecisionCoefficient of VarianceMaterial Average Within Laboratories,%VrBetween Laboratories,%VLRelative RepeatabilityInterval, % IrRelative ReproducibilityInterval, % IRA 2.585 0.129 0.257 0.36 0.81B 2.569 0.130 0.103 0.37 0.47C 2.619 0.156 0.033 0.44 0.45D 2.622 0.127 0.077 0.36 0.42E 2.599 0.091 0.091 0.26 0.36Grand Average 2.599 0.127 0.112 0.36 0.50C 914 95 (2004)3


    注意事项

    本文(ASTM C914-1995(2004) Standard Test Method for Bulk Density and Volume of Solid Refractories by Wax Immersion《用浸蜡法测定固体耐火材料的松密度和体积的标准试验方法》.pdf)为本站会员(Iclinic170)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开