欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C885-1987(2007)e1 Standard Test Method for Youngs Modulus of Refractory Shapes by Sonic Resonance《用音响共振法测定耐火异型材的弹性模量的标准试验方法》.pdf

    • 资源ID:508661       资源大小:103.77KB        全文页数:6页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C885-1987(2007)e1 Standard Test Method for Youngs Modulus of Refractory Shapes by Sonic Resonance《用音响共振法测定耐火异型材的弹性模量的标准试验方法》.pdf

    1、Designation: C885 87 (Reapproved 2007)1Standard Test Method forYoungs Modulus of Refractory Shapes by SonicResonance1This standard is issued under the fixed designation C885; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

    2、 of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTESection 1.2 was added and editorial changes made in November 2009.1. Scope1.1 This test method covers a procedure for mea

    3、suring theresonance frequency in the flexural (transverse) mode ofvibration of rectangular refractory brick or rectangularlyshaped monoliths at room temperature. Youngs modulus iscalculated from the resonance frequency of the shape, its mass(weight) and dimensions.1.2 UnitsThe values stated in inch-

    4、pound units are to beregarded as standard. The values given in parentheses aremathematical conversions to SI units that are provided forinformation only and are not considered standard.1.2.1 Although the Hertz (Hz) is an SI unit, it is derivedfrom seconds which is also an inch-pound unit.1.3 This st

    5、andard does not purport to address all of thesafety concerns, if any,associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1

    6、ASTM Standards:2C134 Test Methods for Size, Dimensional Measurements,and Bulk Density of Refractory Brick and InsulatingFirebrickC215 Test Method for Fundamental Transverse, Longitudi-nal, and Torsional Resonant Frequencies of ConcreteSpecimensC623 Test Method for Youngs Modulus, Shear Modulus,and P

    7、oissons Ratio for Glass and Glass-Ceramics byResonanceC747 Test Method for Moduli of Elasticity and Fundamen-tal Frequencies of Carbon and Graphite Materials by SonicResonanceC848 Test Method for Youngs Modulus, Shear Modulus,and Poissons Ratio For Ceramic Whitewares by Reso-nance3. Summary of Test

    8、Method3.1 Test specimens are vibrated in flexure over a broadfrequency range; mechanical excitation is provided through theuse of a vibrating driver that transforms an initial electricalsignal into a mechanical vibration. A detector senses theresulting mechanical vibrations of the specimen and trans

    9、formsthem into an electrical signal that can be displayed on thescreen of an oscilloscope to detect resonance by a Lissajousfigure. The calculation of Youngs modulus from the resonancefrequency measured is simplified by assuming that Poissonsratio is16 for all refractory materials.4. Significance an

    10、d Use4.1 Youngs modulus is a fundamental mechanical propertyof a material.4.2 This test method is used to determine the dynamicmodulus of elasticity of rectangular shapes. Since the test isnondestructive, specimens may be used for other tests asdesired.4.3 This test method is useful for research and

    11、 development,engineering application and design, manufacturing processcontrol, and for developing purchasing specifications.4.4 The fundamental assumption inherent in this testmethod is that a Poissons ratio of16 is typical for heteroge-neous refractory materials. The actual Poissons ratio maydiffer

    12、.5. Apparatus5.1 A block diagram of a suggested test apparatus arrange-ment is shown in Fig. 1. Details of the equipment are asfollows:5.1.1 Audio Oscillator, having a continuously variablecalibrated-frequency output from about 50 Hz to at least 10kHz.1This test method is under the jurisdiction of A

    13、STM Committee C08 onRefractories and is the direct responsibility of Subcommittee C08.01 on Strength.Current edition approved March 1, 2007. Published April 2007. Originallyapproved in 1978. Last previous edition approved in 2002 as C885 87 (2002).DOI: 10.1520/C0885-87R07.2For referenced ASTM standa

    14、rds, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA

    15、 19428-2959, United States.5.1.2 Audio Amplifier, having a power output sufficient toensure that the type of driver used can excite the specimen; theoutput of the amplifier must be adjustable.5.1.3 Driver, which may consist of a transducer or aloudspeaker from which the cone has been removed andrepl

    16、aced with a probe (connecting rod) oriented parallel to thedirection of the vibration; suitable vibration-isolating mounts.NOTE 1For small specimens, an air column may preferably be usedfor “coupling” the loudspeaker to the specimen.5.1.4 Detector, which may be a transducer or a balance-mounted mona

    17、ural (crystal or magnetic) phonograph pick-upcartridge of good frequency response; the detector should bemovable across the specimen; suitable vibration-isolatingmounts.5.1.5 Pre-Scope Amplifier in the detector circuit,impedance-matched with the detector used; the output must beadjustable.5.1.6 Indi

    18、cating Devices, including an oscilloscope, a reso-nance indicator (voltmeter or ammeter), and a frequencyindicator, which may be the control dial of the audio-oscillator(accurately readable to 6 30 Hz or better) or, preferably, afrequency meter, for example, a digital frequency counter.5.1.7 Specime

    19、n Support, consisting of two knife edges (canbe steel, rubber-coated steel, or medium-hard rubber) of alength at least equal to the width of the specimens; the distancebetween the knife edges must be adjustable.NOTE 2The support for the knife edges may be a foam rubber pad,and should be vibration-is

    20、olated from drive and detector supports.NOTE 3Alternatively, knife edges can be omitted and the specimenmay be placed directly on a foam rubber pad if the test material is easilyexcitable due to its composition and geometry.6. Sampling and Specimen Preparation6.1 Specimens must be rectangular prisms

    21、. They may be fullstraight brick or rectangular samples cut from brick shapes;rectangular straight shapes of monolithic refractories, or rect-angular specimens cut from monolithic shapes. For best results,their length to thickness ratio should be at least 3 to 1.Maximum specimen size and mass are pr

    22、imarily determined bythe test systems energy capability and by the resonanceresponse characteristics of the material. Minimum specimensize and mass are primarily determined by adequate andoptimum coupling of the driver and the detector to thespecimen, and by the resonance response characteristics of

    23、 thematerial. Measure the mass (weight) and dimensions of the dryspecimens in accordance with Test Methods C134 and record.7. Procedure7.1 Refractories can vary markedly in their response to thedrivers frequency; the geometry of the specimens also plays asignificant role in their response characteri

    24、stics. Variations inthe following procedure are permissible as long as flexural andfundamental resonance are verified (Note 6 and Note 7). Fig. 2and Fig. 3 illustrate a typical specimen positioning and thedesired mode of vibration, respectively.7.2 Sample PlacementPlace the specimen “flat” (thick-ne

    25、ss dimension perpendicular to supports) on parallel knifeFIG. 1 Block Diagram of ApparatusFIG. 2 Typical Specimen Positioning for Measurement of FlexuralResonanceC885 87 (2007)12edges at 0.224 l (where l is the length of the specimen) from itsends. Optionally, the specimen can be placed on a foam ru

    26、bberpad.7.3 Driver PlacementPlace the driver preferably at thecenter of the top or bottom face of the specimen usingmoderate balanced pressure or spring action.NOTE 4Especially with small (thin) specimens, the lightest possibledriver pressure to ensure adequate “coupling” must be used in order toach

    27、ieve proper resonance response. In small specimens, exact placementof the driver at the very center of the flat specimen is important; also, anair column may be used for “coupling.”7.4 Detector PlacementPlace the detector preferably atone end of the specimen and at the center of either the width ort

    28、hickness (considering the orientation of maximum response ofthe detector) using minimal pressure.NOTE 5Make sure that the stylus of the phonograph cartridge (ifused) is well secured.7.5 Activate and warm up the equipment so that poweradequate to excite the specimen is delivered to the driver. Setthe

    29、 gain on the detector circuit high enough to detect vibrationin the specimen, and to display it on the oscilloscope screenwith sufficient amplitude to measure accurately the frequencyat which the signal amplitude is maximized. Adjust theoscilloscope so that a sharply defined horizontal baseline exis

    30、tswhen the specimen is not excited. Scan frequency with theaudio oscillator until fundamental flexural specimen resonanceis indicated by an oval to circular Lissajous figure at theoscilloscope and maximum output is shown at the resonanceindicator. Record the resonance frequency.NOTE 6To verify the f

    31、lexural mode of vibration, move the detector tothe top center of the specimen. The oval or circular oscilloscope patternshall be maintained. Placement of the detector above the nodal points (at0.224 l) shall cause a Lissajous pattern and high output at the resonanceindicator to disappear.NOTE 7To ve

    32、rify the fundamental mode of flexural resonance, excitethe specimen at one half of the frequency established in 7.5. A “figureeight” Lissajous pattern should appear at the oscilloscope when thedetector is placed at the end center or at the top center of the specimen.8. Calculation8.1 Data determined

    33、 on individual specimens include:8.1.1 l = length of specimen, in.,8.1.2 b = width of specimen, in.,8.1.3 t = thickness of specimen, in.,8.1.4 w = mass (weight) of specimen, lb, and8.1.5 f = fundamental flexural resonance frequency, Hz.8.2 Calculate Youngs modulus E, in psi, of the specimen asfollow

    34、s:E 5 C1 w f2(1)where C1=C1b/b (in s2/in.2) is calculated from values ofC1b listed in Table 1 for various l/t ratios based on Picketts3equations solved for a Poissons ratio of16 . Alternatively,C1b can be computed directly from l and t using Pickettsoriginal equations and correction factors, as desc

    35、ribed inAppendix X1.TABLE 1 C1b Valuesl/t C1b l/t C1b l/t C1b l/t C1b l/t C1b l/t C1b2.50 0.0750 3.10 0.1200 3.70 0.1815 4.30 0.2627 4.90 0.3665 5.50 0.49632.51 0.0756 3.11 0.1209 3.71 0.1827 4.31 0.2642 4.91 0.3685 5.51 0.49882.52 0.0763 3.12 0.1218 3.72 0.1839 4.32 0.2657 4.92 0.3704 5.52 0.50122.

    36、53 0.0769 3.13 0.1227 3.73 0.1851 4.33 0.2673 4.93 0.3724 5.53 0.50362.54 0.0776 3.14 0.1236 3.74 0.1863 4.34 0.2688 4.94 0.3743 5.54 0.50602.55 0.0782 3.15 0.1245 3.75 0.1875 4.35 0.2704 4.95 0.3763 5.55 0.50842.56 0.0789 3.16 0.1254 3.76 0.1887 4.36 0.2720 4.96 0.3783 5.56 0.51092.57 0.0795 3.17 0

    37、.1263 3.77 0.1899 4.37 0.2735 4.97 0.3803 5.57 0.51332.58 0.0802 3.18 0.1272 3.78 0.1911 4.38 0.2751 4.98 0.3823 5.58 0.51582.59 0.0808 3.19 0.1281 3.79 0.1924 4.39 0.2767 4.99 0.3843 5.59 0.51832.60 0.0815 3.20 0.1291 3.80 0.1936 4.40 0.2783 5.00 0.3863 5.60 0.52072.61 0.0822 3.21 0.1300 3.81 0.194

    38、8 4.41 0.2799 5.01 0.3883 5.61 0.52322.62 0.0828 3.22 0.1309 3.82 0.1961 4.42 0.2815 5.02 0.3903 5.62 0.52572.63 0.0835 3.23 0.1318 3.83 0.1973 4.43 0.2831 5.03 0.3924 5.63 0.52822.64 0.0842 3.24 0.1328 3.84 0.1986 4.44 0.2847 5.04 0.3944 5.64 0.53072.65 0.0849 3.25 0.1337 3.85 0.1999 4.45 0.2864 5.

    39、05 0.3964 5.65 0.53322.66 0.0856 3.26 0.1347 3.86 0.2011 4.46 0.2880 5.06 0.3985 5.66 0.53582.67 0.0863 3.27 0.1356 3.87 0.2024 4.47 0.2896 5.07 0.4005 5.67 0.53832.68 0.0870 3.28 0.1366 3.88 0.2037 4.48 0.2913 5.08 0.4026 5.68 0.54082.69 0.0877 3.29 0.1376 3.89 0.2050 4.49 0.2929 5.09 0.4047 5.69 0

    40、.54342.70 0.0884 3.30 0.1385 3.90 0.2062 4.50 0.2946 5.10 0.4068 5.70 0.54592.71 0.0891 3.31 0.1395 3.91 0.2075 4.51 0.2963 5.11 0.4089 5.71 0.54852.72 0.0898 3.32 0.1405 3.92 0.2088 4.52 0.2979 5.12 0.4110 5.72 0.55113Pickett, G., “Equations for Computing Elastic Constants from Flexural andTorsiona

    41、l Resonant Frequencies of Vibration of Prisms and Cylinders,” Proceed-ings, ASTM, Vol 45, 1945, pp. 846863.FIG. 3 Fundamental Mode of Vibration in Flexure (Side View)C885 87 (2007)13TABLE 1 Continuedl/t C1b l/t C1b l/t C1b l/t C1b l/t C1b l/t C1b2.73 0.0905 3.33 0.1415 3.93 0.2101 4.53 0.2996 5.13 0

    42、.4131 5.73 0.55372.74 0.0912 3.34 0.1425 3.94 0.2115 4.54 0.3013 5.14 0.4152 5.74 0.55622.75 0.0920 3.35 0.1435 3.95 0.2128 4.55 0.3030 5.15 0.4173 5.75 0.55882.76 0.0927 3.36 0.1445 3.96 0.2141 4.56 0.3047 5.16 0.4194 5.76 0.56152.77 0.0934 3.37 0.1455 3.97 0.2154 4.57 0.3064 5.17 0.4216 5.77 0.564

    43、12.78 0.0942 3.38 0.1465 3.98 0.2168 4.58 0.3081 5.18 0.4237 5.78 0.56672.79 0.0949 3.39 0.1475 3.99 0.2181 4.59 0.3098 5.19 0.4258 5.79 0.56932.80 0.0957 3.40 0.1485 4.00 0.2194 4.60 0.3116 5.20 0.4280 5.80 0.57202.81 0.0964 3.41 0.1496 4.01 0.2208 4.61 0.3133 5.21 0.4302 5.81 0.57462.82 0.0972 3.4

    44、2 0.1506 4.02 0.2222 4.62 0.3150 5.22 0.4323 5.82 0.57732.83 0.0979 3.43 0.1516 4.03 0.2235 4.63 0.3168 5.23 0.4345 5.83 0.57992.84 0.0987 3.44 0.1527 4.04 0.2249 4.64 0.3185 5.24 0.4367 5.84 0.58262.85 0.0994 3.45 0.1537 4.05 0.2263 4.65 0.3203 5.25 0.4389 5.85 0.58532.86 0.1002 3.46 0.1548 4.06 0.

    45、2277 4.66 0.3220 5.26 0.4411 5.86 0.58802.87 0.1010 3.47 0.1558 4.07 0.2290 4.67 0.3238 5.27 0.4433 5.87 0.59072.88 0.1018 3.48 0.1569 4.08 0.2304 4.68 0.3256 5.28 0.4455 5.88 0.59342.89 0.1026 3.49 0.1579 4.09 0.2318 4.69 0.3274 5.29 0.4478 5.89 0.59612.90 0.1033 3.50 0.1590 4.10 0.2332 4.70 0.3292

    46、 5.30 0.4500 5.90 0.59892.91 0.1041 3.51 0.1601 4.11 0.2347 4.71 0.3310 5.31 0.4522 5.91 0.60162.92 0.1049 3.52 0.1612 4.12 0.2361 4.72 0.3328 5.32 0.4545 5.92 0.60432.93 0.1057 3.53 0.1623 4.13 0.2375 4.73 0.3346 5.33 0.4568 5.93 0.60712.94 0.1065 3.54 0.1633 4.14 0.2389 4.74 0.3364 5.34 0.4590 5.9

    47、4 0.60992.95 0.1074 3.55 0.1644 4.15 0.2404 4.75 0.3383 5.35 0.4613 5.95 0.61262.96 0.1082 3.56 0.1655 4.16 0.2418 4.76 0.3401 5.36 0.4636 5.96 0.61542.97 0.1090 3.57 0.1667 4.17 0.2433 4.77 0.3419 5.37 0.4659 5.97 0.61822.98 0.1098 3.58 0.1678 4.18 0.2447 4.78 0.3438 5.38 0.4682 5.98 0.62102.99 0.1

    48、106 3.59 0.1689 4.19 0.2462 4.79 0.3456 5.39 0.4705 5.99 0.62383.00 0.1115 3.60 0.1700 4.20 0.2476 4.80 0.3475 5.40 0.4728 6.00 0.62663.01 0.1123 3.61 0.1711 4.21 0.2491 4.81 0.3494 5.41 0.4751 6.01 0.62943.02 0.1131 3.62 0.1723 4.22 0.2506 4.82 0.3513 5.42 0.4774 6.02 0.63233.03 0.1140 3.63 0.1734

    49、4.23 0.2521 4.83 0.3531 5.43 0.4798 6.03 0.63513.04 0.1148 3.64 0.1746 4.24 0.2536 4.84 0.3550 5.44 0.4821 6.04 0.63803.05 0.1157 3.65 0.1757 4.25 0.2551 4.85 0.3569 5.45 0.4845 6.05 0.64083.06 0.1166 3.66 0.1769 4.26 0.2566 4.86 0.3588 5.46 0.4868 6.06 0.64373.07 0.1174 3.67 0.1780 4.27 0.2581 4.87 0.3608 5.47 0.4892 6.07 0.64663.08 0.1183 3.68 0.1792 4.28 0.2596 4.88 0.3627 5.48 0.4916 6.08 0.64953.09 0.1192 3.69 0.1804 4.29 0.2611 4.89 0.3646 5.49 0.4940 6.09 0.65246.10 0.6553 6.40 0.7466 6.70 0.8465 7.00 0


    注意事项

    本文(ASTM C885-1987(2007)e1 Standard Test Method for Youngs Modulus of Refractory Shapes by Sonic Resonance《用音响共振法测定耐火异型材的弹性模量的标准试验方法》.pdf)为本站会员(postpastor181)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开