欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C634-2009 Standard Terminology Relating to Building and Environmental Acoustics《关于建筑和环境声学的标准术语》.pdf

    • 资源ID:507837       资源大小:322.27KB        全文页数:15页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C634-2009 Standard Terminology Relating to Building and Environmental Acoustics《关于建筑和环境声学的标准术语》.pdf

    1、Designation: C 634 09Standard Terminology Relating toBuilding and Environmental Acoustics1This standard is issued under the fixed designation C 634; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A numbe

    2、r in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONIn some of the entries, those that are measures of physical quantities, the term is followed by threeitems: symbol, dimensions, and unit. Th

    3、e symbol, in italics, stands for the magnitude of the quantityin mathematical expressions. The dimensions of a quantity express its measure in terms of threefundamental quantities: M for mass, L for length, and T for time. Speed, for instance, is the quotientobtained when the distance an object move

    4、s is divided by the time involved. The dimensions areLT1, the negative exponent indicating division. The unit is consistently in SI, Le SystmeInternational dUnits. Those still using the cgs (centimetre-gram-second) or the inchpound system ofunits are referred for most of the conversion factors to IE

    5、EE/ ASTM SI 10. A few conversion factorsare listed in Section 4 of this terminology.The dimensions of a quantity are the same regardless of the units in which the quantity is measured.Speed has the dimensions LT1 whether it is measured in miles per hour, feet per second, or metresper second. Quantit

    6、ies with different dimensions are not the same. Flow resistance and specific flowresistance, for instance, are quantities of different kinds even though the names are similar. On theother hand, quantities with the same dimensions are not necessarily of the same kind. Sound energydensity, for instanc

    7、e, has the same dimensions as sound pressure, ML1T2, but it is not a kind ofsound pressure. Nor is absorption with the dimensions L2 a kind of area.1. Scope1.1 This terminology covers terms and definitions related toenvironmental acoustics. Only definitions common to two ormore standards under the j

    8、urisdiction of Committee E33 arelisted here. The purpose of this terminology is to promoteuniformity of key definitions. Definitions pertinent to only onestandard and exceptions to the definitions listed below arecontained in the individual standards and should be used whenfollowing those standards.

    9、2. Referenced Documents2.1 ASTM Standards:2C 423 Test Method for Sound Absorption and Sound Ab-sorption Coefficients by the Reverberation Room MethodC 367 Test Methods for Strength Properties of PrefabricatedArchitectural Acoustical Tile or Lay-In Ceiling PanelsC 384 Test Method for Impedance and Ab

    10、sorption ofAcoustical Materials by Impedance Tube MethodC 522 Test Method for Airflow Resistance of AcousticalMaterialsC 635 Specification for the Manufacture, Performance, andTesting of Metal Suspension Systems for Acoustical Tileand Lay-in Panel CeilingsC 636 Practice for Installation of Metal Cei

    11、ling SuspensionSystems for Acoustical Tile and Lay-In PanelsC 667 Specification for Prefabricated Reflective InsulationSystems for Equipment and Pipe Operating at Tempera-tures above Ambient AirC 871 Test Methods for Chemical Analysis of ThermalInsulation Materials for Leachable Chloride, Fluoride,S

    12、ilicate, and Sodium IonsE90 Test Method for Laboratory Measurement of AirborneSound Transmission Loss of Building Partitions and Ele-mentsE 336 Test Method for Measurement of Airborne SoundAttenuation between Rooms in BuildingsE 413 Classification for Rating Sound InsulationE 477 Test Method for Mea

    13、suring Acoustical and AirflowPerformance of Duct Liner Materials and PrefabricatedSilencersE 492 Test Method for Laboratory Measurement of ImpactSound Transmission Through Floor-Ceiling Assemblies1This terminology is under the jurisdiction of ASTM Committee E33 onBuilding and Environmental Acoustics

    14、 and is the direct responsibility of Subcom-mittee E33.07 on Definitions and Editorial.Current edition approved April 1, 2009. Published May 2009. Originallyapproved in 1969. Last previous edition approved in 2008 as C 634 08a.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orc

    15、ontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Using the Tapping M

    16、achineE 497 Practice for Installing Sound-Isolating LightweightPartitions3E 557 Guide for The Installation of Operable PartitionsE 596 Test Method for Laboratory Measurement of NoiseReduction of Sound-Isolating EnclosuresE 756 Test Method for MeasuringVibration-Damping Prop-erties of MaterialsE 795

    17、Practices for Mounting Test Specimens DuringSound Absorption TestsE 966 Guide for Field Measurements of Airborne SoundInsulation of Building Facades and Facade ElementsE 989 Classification for Determination of Impact InsulationClass (IIC)E 1007 Test Method for Field Measurement of TappingMachine Imp

    18、act Sound Transmission Through Floor-Ceiling Assemblies and Associated Support StructuresE 1014 Guide for Measurement of Outdoor A-WeightedSound LevelsE 1042 Classification for Acoustically Absorptive MaterialsApplied by Trowel or SprayE 1050 Test Method for Impedance and Absorption ofAcoustical Mat

    19、erials UsingATube, Two Microphones andA Digital Frequency Analysis SystemE 1110 Classification for Determination of ArticulationClassE 1111 Test Method for Measuring the Interzone Attenua-tion of Open Office ComponentsE 1123 Practices for Mounting Test Specimens for SoundTransmission Loss Testing of

    20、 Naval and Marine ShipBulkhead Treatment MaterialsE 1124 Test Method for Field Measurement of SoundPower Level by the Two-Surface MethodE 1130 Test Method for Objective Measurement of SpeechPrivacy in Open Plan Spaces Using Articulation IndexE 1179 Specification for Sound Sources Used for TestingOpe

    21、n Office Components and SystemsE 1222 Test Method for Laboratory Measurement of theInsertion Loss of Pipe Lagging SystemsE 1265 Test Method for Measuring Insertion Loss of Pneu-matic Exhaust SilencersE 1289 Specification for Reference Specimen for SoundTransmission LossE 1332 Classification for Dete

    22、rmination of Outdoor-IndoorTransmission ClassE 1374 Guide for Open Office Acoustics and ApplicableASTM StandardsE 1408 Test Method for Laboratory Measurement of theSound Transmission Loss of Door Panels and Door Sys-tems3E 1414 Test Method for Airborne Sound Attenuation Be-tween Rooms Sharing a Comm

    23、on Ceiling PlenumE 1433 Guide for Selection of Standards on EnvironmentalAcousticsE 1503 Test Method for Conducting Outdoor Sound Mea-surements Using a Digital Statistical Sound AnalysisSystemE 1573 Test Method for Evaluating Masking Sound in OpenOffices Using A-Weighted and One-Third Octave BandSou

    24、nd Pressure LevelsE 1574 Test Method for Measurement of Sound in Residen-tial SpacesE 1686 Guide for Selection of Environmental Noise Mea-surements and CriteriaE 1704 Guide for Specifying Acoustical Performance ofSound-Isolating EnclosuresE 1779 Guide for Preparing a Measurement Plan for Con-ducting

    25、 Outdoor Sound MeasurementsE 1780 Guide for Measuring Outdoor Sound Received froma Nearby Fixed SourceE 2179 Test Method for Laboratory Measurement of theEffectiveness of Floor Coverings in Reducing ImpactSound Transmission Through Concrete FloorsE 2202 Practice for Measurement of Equipment-Generate

    26、dContinuous Noise for Assessment of Health HazardsE 2235 Test Method for Determination of Decay Rates forUse in Sound Insulation Test MethodsE 2249 Test Method for Laboratory Measurement of Air-borne Transmission Loss of Building Partitions and Ele-ments Using Sound IntensityE 2459 Guide for Measure

    27、ment of In-Duct Sound PressureLevels from Large Industrial Gas Turbines and FansIEEE/ ASTM SI 10 Standard for Use of the InternationalSystem of Units (SI): The Modern Metric System2.2 ANSI Standard:ANSI S1.4 Specification for Sound Level Meters4ANSI S1.6 Preferred Frequencies, Frequency Levels, andB

    28、and Numbers for Acoustical MeasurementsANSI S1.11 Octave-Band and Fractional Octave-BandAna-log and Digital Filters, Specifications for3. Terminology3.1 If the term sought by the user cannot be found in 3.2,itmay be found in 4.1.3.2 Terms and Definitions:acoustic impedance, Z R + jX; ML4T1; mks acou

    29、sticohm (Pas/m3)of a surface, for a given frequency, thecomplex quotient obtained when the sound pressure aver-aged over the surface is divided by the volume velocitythrough the surface. The real and imaginary components arecalled, respectively, acoustic resistance and acoustic reac-tance.acoustical

    30、 barriercontiguous objects such as solid walls,buildings, or earthen berms that substantially block the directpath of sound between a source and receiver, and which, ifthey have an open edge or edges allowing diffraction aroundthem, are sufficiently wide and high to cause significantreduction of the

    31、 sound traveling from the source to thereceiver.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.C634092acoustical materialany

    32、material considered in terms of itsacoustical properties. Commonly and especially, a materialdesigned to absorb sound.admittance ratio, yrc grcjbrc; dimensionlessthereciprocal of the impedance ratio. The real and imaginarycomponents are called, respectively, conductance ratio andsusceptance ratio.ai

    33、rborne soundsound that arrives at the point of interest,such as one side of a partition, by propagation through air.airflow resistance, R; ML4T1; mks acoustic ohm (Pas/m3)the quotient of the air pressure difference across aspecimen divided by the volume velocity of airflow throughthe specimen. The p

    34、ressure difference and the volumevelocity may be either steady or alternating.airflow resistivity, ro; ML3T1; mks rayl/m (Pas/m2)of ahomogeneous material, the quotient of its specific airflowresistance divided by its thickness.ambient noisethe composite of airborne sound from manysources near and fa

    35、r associated with a given environment.No particular sound is singled out for interest.arithmetic mean sound pressure levelof several relatedsound pressure levels measured at different positions ordifferent times, or both, in a specified frequency band, thesum of the sound pressure levels divided by

    36、the number oflevels.DISCUSSIONThe arithmetic mean sound pressure level is sometimesused to approximate the average sound pressure level. The accuracyof this approximation depends upon the range of sound pressure levels.average sound pressure levelof several related soundpressure levels measured at d

    37、ifferent positions or differenttimes, or both, in a specified frequency band, ten times thecommon logarithm of the arithmetic mean of the squaredpressure ratios from which the individual levels were de-rived.DISCUSSION1An average sound pressure level obtained by aver-aging the A-weighted sound level

    38、 continuously over a specified periodis called the time-average sound level.DISCUSSION2Since, by definition, a squared pressure ratio, pi2/p02, is equal to 10Li/10, average sound pressure level is calculated fromthe expression:Li5 10 logS1n(i 5 1n10Li/10Dwhere:Lp= average sound pressure level, dB,n

    39、= number of individual sound pressure levels,pi= rms pressure at an individual position or time, or both,Pa,p0= 20 Pa, reference sound pressure, andLi= an individual sound pressure level, dB.If conditions warrant, an integral expression may be used:Lp5 10 logS1T*t1t2p2t!/p02! dtDwhere:Lp= average so

    40、und pressure level during a specified timeinterval, dB,T =t2t1= a specified time interval, s, min, h, or day,p(t) = instantaneous sound pressure, Pa, andp0= 20 Pa, reference sound pressure.background noisenoise from all sources unrelated to aparticular sound that is the object of interest. Backgroun

    41、dnoise may include airborne, structureborne, and instrumentnoise.cutoff frequencyof an anechoic wedge or set of wedges, thelowest frequency above which the normal incidence soundabsorption coefficient is at least 0.990.dampto cause a loss or dissipation of the oscillatory orvibrational energy of an

    42、electrical or mechanical system.decay rate, d; T1; dB/sfor airborne sound, the rate ofdecrease of sound pressure level after the source of soundhas stopped; for vibration, the rate of decrease of vibratoryacceleration, velocity, or displacement level after the exci-tation has stopped.decibel, dBthe

    43、term used to identify ten times the commonlogarithm of the ratio of two like quantities proportional topower or energy. (See level, sound transmission loss.)Thus, one decibel corresponds to a power ratio of 100.1andn decibels corresponds to a power ratio of (100.1)n.DISCUSSIONSince the decibel expre

    44、sses the ratio of two likequantities, it has no dimensions. It is, however, common practice totreat “decibel” as a unit as, for example, in the sentence, “The averagesound pressure level in the room is 45 decibels.”diffractiona change in the direction of propagation of soundenergy in the neighborhoo

    45、d of a boundary discontinuity,such as the edge of a reflective or absorptive surface.diffuse sound fieldthe sound in a region where the intensityis the same in all directions and at every point.direct sound fieldthe sound that arrives directly from asource without reflection.dummy microphonea microp

    46、hone substitute which haselectrical characteristics identical to a functional micro-phone, but which has essentially no sensitivity to incidentsound pressure.field sound transmission class, FSTCsound transmissionclass calculated in accordance with Classification E 413using values of field transmissi

    47、on loss.field transmission loss, FTLsound transmission loss mea-sured in accordance with Annex A1 of Test Method E 336.flanking transmissiontransmission of sound from thesource to a receiving location by a path other than that underconsideration.impact insulation class, IICa single-number rating der

    48、ivedfrom measured values of normalized impact sound pressurelevels in accordance with Annex A1 of Test Method E 492.It provides an estimate of the impact sound insulatingperformance of a floor-ceiling assembly.impedance ratio, z/rc r/rc + jx/rc; dimensionlesstheratio of the specific normal acoustic

    49、impedance at a surfaceto the characteristic impedance of the medium. The real andimaginary components are called, respectively, resistanceratio and reactance ratio.impulsive sound, na brief, intrusive sound, such as thatassociated with a tire blowout, operation of a punch press,the discharge of a firearm, a door slam, or a shout, usuallyC634093characterized by a rapid rise time in the initial pressure pulseof less than a few milliseconds, and by a decay time of lessthan a few seconds.DISCUSSIONNo m


    注意事项

    本文(ASTM C634-2009 Standard Terminology Relating to Building and Environmental Acoustics《关于建筑和环境声学的标准术语》.pdf)为本站会员(progressking105)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开