欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C591-2011 Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation《非表面加工用预制刚性蜂窝状聚氨基甲酸乙酯绝热材料标准规格》.pdf

    • 资源ID:467125       资源大小:107.33KB        全文页数:6页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C591-2011 Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation《非表面加工用预制刚性蜂窝状聚氨基甲酸乙酯绝热材料标准规格》.pdf

    1、Designation: C591 11Standard Specification forUnfaced Preformed Rigid Cellular PolyisocyanurateThermal Insulation1This standard is issued under the fixed designation C591; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of

    2、 last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This specification covers the types,

    3、 physical properties,and dimensions of unfaced, preformed rigid cellular polyiso-cyanurate plastic material intended for use as thermal insula-tion on surfaces from -297F (-183C) to 300F (149C). Forspecific applications, the actual temperature limits shall beagreed upon by the manufacturer and purch

    4、aser.1.2 This specification only covers “polyurethane modifiedpolyisocyanurate” thermal insulation which is commonly re-ferred to as “polyisocyanurate” thermal insulation. This stan-dard does not encompass all polyurethane modified materials.Polyurethane modified polyisocyanurate and other polyure-t

    5、hane materials are similar, but the materials will performdifferently under some service conditions.1.3 This standard is designed as a material specification, nota design document. Physical property requirements vary byapplication and temperature. At temperatures below -70F(-51C) the physical proper

    6、ties of the polyisocyanurate insula-tion at the service temperature are of particular importance.Below -70F (-51C) the manufacturer and the purchaser mustagree on what additional cold temperature performance prop-erties are required to determine if the material can functionadequately for the particu

    7、lar application.1.4 The main body of this standard addresses requirementsof unfaced preformed rigid cellular polyisocyanurate thermalinsulation manufactured using blowing agents with an ozonedepletion potential of 0 (ODP 0).1.5 The table in the Annex A1 addresses requirements ofunfaced preformed rig

    8、id cellular polyisocyanurate thermalinsulation manufactured with HCFC blowing agent.1.6 When adopted by an authority having jurisdiction, codesthat address fire properties in many applications regulate theuse of the thermal insulation materials covered by this speci-fication. Fire properties are con

    9、trolled by job, project, or otherspecifications where codes or government regulations do notapply.1.7 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not conside

    10、red standard.1.8 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.

    11、 Referenced Documents2.1 ASTM Standards:2C165 Test Method for Measuring Compressive Propertiesof Thermal InsulationsC168 Terminology Relating to Thermal InsulationC177 Test Method for Steady-State Heat Flux Measure-ments and Thermal Transmission Properties by Means ofthe Guarded-Hot-Plate ApparatusC

    12、272 Test Method for Water Absorption of Core Materialsfor Structural Sandwich ConstructionsC303 Test Method for Dimensions and Density of Pre-formed Block and BoardType Thermal InsulationC335 Test Method for Steady-State Heat Transfer Proper-ties of Pipe InsulationC390 Practice for Sampling and Acce

    13、ptance of ThermalInsulation LotsC411 Test Method for Hot-Surface Performance of High-Temperature Thermal InsulationC518 Test Method for Steady-State Thermal TransmissionProperties by Means of the Heat Flow Meter ApparatusC550 Test Method for Measuring Trueness and Squarenessof Rigid Block and Board

    14、Thermal Insulation1This specification is under the jurisdiction of ASTM Committee C16 onThermal Insulation and is the direct responsibility of Subcommittee C16.22 onOrganic and Nonhomogeneous Inorganic Thermal Insulations.Current edition approved May 15, 2011. Published June 2011. Originallyapproved

    15、 in 1966. Last previous edition approved in 2009 as C591 09. DOI:10.1520/C0591-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary pag

    16、e onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.C585 Practice for Inner and Outer Diameters of ThermalInsulation for Nominal Sizes of Pipe and TubingC871 Test Methods for Chemical Analysis of ThermalInsulation Ma

    17、terials for Leachable Chloride, Fluoride,Silicate, and Sodium IonsC1045 Practice for CalculatingThermalTransmission Prop-erties Under Steady-State ConditionsC1058 Practice for Selecting Temperatures for Evaluatingand Reporting Thermal Properties of Thermal InsulationC1114 Test Method for Steady-Stat

    18、e Thermal TransmissionProperties by Means of the Thin-Heater ApparatusC1303 Test Method for Predicting Long-Term ThermalResistance of Closed-Cell Foam InsulationC1363 Test Method for Thermal Performance of BuildingMaterials and Envelope Assemblies by Means of a HotBox ApparatusD883 Terminology Relat

    19、ing to PlasticsD1621 Test Method for Compressive Properties of RigidCellular PlasticsD1622 Test Method for Apparent Density of Rigid CellularPlasticsD2126 Test Method for Response of Rigid Cellular Plasticsto Thermal and Humid AgingD2856 Test Method for Open-Cell Content of Rigid Cellu-lar Plastics

    20、by the Air Pycnometer3D6226 Test Method for Open Cell Content of Rigid CellularPlasticsE84 Test Method for Surface Burning Characteristics ofBuilding MaterialsE96/E96M Test Methods for Water Vapor Transmission ofMaterials3. Terminology3.1 For descriptions of terms used in this specification, referto

    21、 Terminologies C168 and D883.3.2 The term polyisocyanurate does not encompass allpolyurethane containing materials (see 1.2).3.3 The term “core specimen” refers to representativesamples cut in accordance with the sampling procedure listedwithin each property test method.3.4 Definitions of Terms Spec

    22、ific to This Standard:3.4.1 ozone depletion potential (ODP)a relative indexindicating the extent to which a chemical product causes ozonedepletion.3.4.1.1 DiscussionThe reference level of 1 is the potentialof trichlorofluoromethane (R-11 or CFC-11) to cause ozonedepletion. ODP-0 an ozone depletion p

    23、otential of zero.4. Classification4.1 Unfaced, preformed rigid cellular polyisocyanurate ther-mal insulation covered by this specification is classified into sixtypes as follows:4.1.1 Type ICompressive resistance of 20 lb/in2(137kPa), minimum.4.1.2 Type IVCompressive resistance of 22 lb/in2(150kPa),

    24、 minimum.4.1.3 Type IICompressive resistance of 35 lb/in2(240kPa), minimum.4.1.4 Type IIICompressive resistance of 45 lb/in2(310kPa), minimum.4.1.5 Type VCompressive resistance of 80 lb/in2(550kPa), minimum.4.1.6 Type VICompressive resistance of 125 lb/in2(862kPa), minimum.4.2 Unfaced, preformed rig

    25、id cellular polyisocyanurate ther-mal insulation covered by this specification is classified intoone grade as follows:4.2.1 Grade 2Service temperature range of -297F(-183C) to 300F (149C).5. Ordering Information5.1 Orders for materials purchased under this specificationshall include the following:5.

    26、1.1 Designation of this specification and year of issue,5.1.2 Product name or grade/type, or both,5.1.3 Apparent thermal conductivity and specific thicknessrequired,5.1.4 Product dimensions,5.1.5 Quantity of material,5.1.6 Special packaging or marking, if required, and5.1.7 Special requirements for

    27、inspection or testing, or both.6. Materials and Manufacture6.1 Unfaced, preformed rigid cellular polyisocyanurate ther-mal insulation is produced by the polymerization of polymericpolyisocyanates in the presence of polyhydroxyl compounds,catalysts, cell stabilizers, and blowing agents.6.2 The materi

    28、al covered by this specification shall besupplied in “bun” form or finished board stock or specialshapes as agreed upon by the manufacturer and end-user.7. Physical Properties7.1 Unfaced, preformed rigid cellular polyisocyanurate ther-mal insulation shall conform to the requirements shown inTable 1.

    29、 See Note 1.NOTE 1It is the responsibility of the user of this standard to determinethe technical requirements for their specific applications and to select anappropriate Type of material.7.2 Polyisocyanurate thermal insulation is an organic mate-rial and is combustible. Do not expose this insulatio

    30、n to flamesor other ignition sources. The fire performance of the materialshall be addressed through fire test requirements established bythe appropriate governing authority. The manufacturer shall becontacted for specific data as fire performance characteristicwill vary with grade, type, and thickn

    31、ess.7.3 Not all physical properties at temperature below -70F(-51C) have been fully tested. Where these properties arecritical, the user shall consult the manufacturer for propertiesand performance at these lower temperatures.8. Dimensions and Tolerances8.1 The dimensions shall be as agreed upon by

    32、the pur-chaser and the supplier. Polyisocyanurate thermal insulation is3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.C591 112commonly available in lengths up to 144 in. (3.66 m), widthsup to 48 in. (1.22 m), and thicknesses from 0.5 in. (13 mm) to24 i

    33、n. (610 mm).8.2 Insulation Board:8.2.1 Dimensional tolerances for boards shall be as follows:Dimension Tolerance, in. (mm)Length 618 (3.2)Width 6116 (1.6)Thickness 6132 (0.8)8.2.2 Edge TruenessDetermine in accordance with TestMethod C550. The maximum deviation from the edge truenessshall not be grea

    34、ter than132 in/ft (2.6 mm/m) of length orwidth.8.2.3 Face TruenessDetermine in accordance with TestMethod C550. The maximum deviation from flatness shall notbe greater than116 in/ft (5.2 mm/m) of length or width.8.2.4 Corner SquarenessDetermine in accordance withTest Method C550. The maximum deviati

    35、on from cornersquareness shall not be greater than18 in. (3.2 mm) for allboard thicknesses.8.2.5 Edge SquarenessDetermine in accordance with TestMethod C550. The maximum deviation from edge squarenessshall not be greater that116 in. (1.6 mm) for all boardthicknesses.8.3 Pipe Insulation:8.3.1 Materia

    36、l supplied for pipe insulation shall have di-mensions and tolerances that are in accordance with PracticeC585.9. Workmanship and Appearances9.1 The polyisocyanurate thermal insulation shall have nodefects that will adversely affect its service qualities.10. Sampling10.1 Unless otherwise specified, t

    37、he polyisocyanurate ther-mal insulation shall be sampled and inspected for acceptance ofmaterial in accordance with Practice C390.10.2 Inspection Requirements:10.2.1 The requirements for density shown in Table 1, thedimensional requirements described in Section 8, and theworkmanship and appearance r

    38、equirements described in Sec-tion 9 are defined as inspection requirements (refer to PracticeC390).10.3 Qualification Requirements:10.3.1 The physical requirements shown in Table 1 exceptdensity are defined as qualification requirements (refer toPractice C390). Density is defined as an inspection re

    39、quire-ment.TABLE 1 Physical Property RequirementsGrade 2: Operating Temperature Range -297F (-183C) to 300F (149C)ANOTEGrade 1, which was specific to PIR for use at operating temperatures of -70F (-51C) to 300F (149C) , was deleted in 2009 because thismaterial was no longer produced. Grade 2 was not

    40、 renumbered to minimize conflict with various global engineering and end-user specifications whichrequire the use of materials complying with, “ASTM C591, Grade 2”.Property Type I Type IV Type II Type III Type V Type VIDensity, min lb/ft3(kg/m3) 1.8 (29) 2.0 (32) 2.5 (40) 3.0 (48) 4.0 (60) 6.0 (96)C

    41、ompressive resistance at 10 % deformationor yield whichever occurs first, parallel torise, min, lb/in2(kPa)20 (137) 22 (150) 35 (240) 45 (310) 80 (550) 125 (862)Apparent thermal conductivity, maxBtu-in/h-ft2-F (W/m-K),at a mean temperature of:-200F (-129C) .13 (.019) .13 (.019) .13 (.019) .14 (.020)

    42、 .14 (.020) .15 (.022)-150F (-101C) .15 (.022) .15 (.022) .15 (.022) .16 (.023) .16 (.023) .17 (.025)-100F (-73C) .17 (.025) .17 (.025) .17 (.025) .18 (.026) .18 (.026) .19 (.027)-50F (-46C) .19 (.027) .19 (.027) .19 (.027) .20 (.029) .20 (.029) .21 (.030)0F (-17C) .20 (.029) .20 (.029) .20 (.029) .

    43、21 (.030) .21 (.030) .22 (.032)50F (10C) .19 (.027) .19 (.027) .19 (.027) .20 (.029) .20 (.029) .21 (.030)75F (24C) .20 (.029) .20 (.029) .20 (.029) .21 (.030) .21 (.030) .22 (.032)150F (66C) .24 (.035) .24 (.035) .24 (.035) .25 (.036) .25 (.036) .26 (.037)200F (93C) .27 (.039) .27 (.039) .27 (.039)

    44、 .28 (.040) .28 (.040) .30 (.044)Water absorption, max, % by volume 2.0 2.0 1.0 1.0 1.0 0.8Water vapor permeability, max, perm-in (ng/Pa-s-m) 4.0 (5.8) 4.0 (5.8) 3.5 (5.1) 3.0 (4.4) 2.5 (3.7) 2.0 (2.9)Dimensional stability, max % linear change158 6 4F (70 6 2C), 97 + 3 % relative humidity 444444-40

    45、6 6F (-40 6 3C), ambient relative humidity 111111212 6 4F (100 6 2C), ambient relative humidity 222222Closed cell content, min 90 90 90 90 90 90Hot-surface performance, at 300F (149C)BPass Pass Pass Pass Pass PassAThis specification does not purport to address all the performance issues associated w

    46、ith its use. It is the responsibility of the user of this standard to establishappropriate performance criteria.BPass/fail criteria found in 12.4.C591 11311. Specimen Preparation11.1 A period of at least 72 h shall elapse from the time ofmanufacture of the polyisocyanurate thermal insulation untilcu

    47、tting of any test specimens. The core test specimens shall becut from the cores of the test samples as required for testing.11.2 Unless otherwise specified, the test specimens shall beconditioned at 73 6 4F (23 6 2C) and 50 6 5 % relativehumidity for at least 12 h prior to testing.12. Test Methods12

    48、.1 DensityDetermine in accordance with Test MethodD1622 or C303.12.2 Compressive ResistanceDetermine in accordancewith Test Method C165, Procedure A or Test Method D1621,Procedure A at a crosshead speed of 0.1 in/min (2.5 mm/min)for each 1 in. (25 mm) of specimen thickness. See Note 2.NOTE 2Polyisoc

    49、yanurate insulation can be anisotropic and, therefore,strength properties can vary with direction. The manufacturer should beconsulted if additional information is required.12.3 Apparent Thermal ConductivityDetermine in accor-dance with either Test Methods C177, C518, C1114 or C1363in accordance with Practice C1045 using the small temperaturedifferences indicated in Practice C1058, Table 3. In some caseswhere this insulation is used in pipe applications, Test MethodC335 is applicable. The core 1 in. (25


    注意事项

    本文(ASTM C591-2011 Standard Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation《非表面加工用预制刚性蜂窝状聚氨基甲酸乙酯绝热材料标准规格》.pdf)为本站会员(orderah291)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开