欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C39 C39M-2017a Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens《圆柱型混凝土试样抗压强度的标准试验方法》.pdf

    • 资源ID:466453       资源大小:194.73KB        全文页数:9页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C39 C39M-2017a Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens《圆柱型混凝土试样抗压强度的标准试验方法》.pdf

    1、Designation: C39/C39M 17C39/C39M 17aStandard Test Method forCompressive Strength of Cylindrical Concrete Specimens1This standard is issued under the fixed designation C39/C39M; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the ye

    2、ar of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope*1.1 This test method covers d

    3、etermination of compressive strength of cylindrical concrete specimens such as molded cylindersand drilled cores. It is limited to concrete having a density in excess of 800 kg/m3 50 lb/ft3.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The in

    4、ch-pound units areshown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be usedindependently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all

    5、of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatorylimitations prior to use. (WarningMeans should be provided to contain concrete fragments dur

    6、ing sudden rupture of specimens.Tendency for sudden rupture increases with increasing concrete strength and it is more likely when the testing machine is relativelyflexible. The safety precautions given in the Manual are recommended.)1.4 The text of this standard references notes which provide expla

    7、natory material. These notes shall not be considered asrequirements of the standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardizationestablished in the Decision on Principles for the Development of International Standards, Guide

    8、s and Recommendations issuedby the World Trade Organization Technical Barriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2C31/C31M Practice for Making and Curing Concrete Test Specimens in the FieldC42/C42M Test Method for Obtaining and Testing Drilled Cores and Sawed Beams

    9、of ConcreteC125 Terminology Relating to Concrete and Concrete AggregatesC192/C192M Practice for Making and Curing Concrete Test Specimens in the LaboratoryC617/C617M Practice for Capping Cylindrical Concrete SpecimensC670 Practice for Preparing Precision and Bias Statements for Test Methods for Cons

    10、truction MaterialsC873/C873M Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical MoldsC1077 Practice forAgencies Testing Concrete and ConcreteAggregates for Use in Construction and Criteria for TestingAgencyEvaluationC1176/C1176M Practice for Making Roller-Compact

    11、ed Concrete in Cylinder Molds Using a Vibrating TableC1231/C1231M Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened CylindricalConcrete SpecimensC1435/C1435M Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating HammerC1604/C1604M Tes

    12、t Method for Obtaining and Testing Drilled Cores of ShotcreteE4 Practices for Force Verification of Testing MachinesE18 Test Methods for Rockwell Hardness of Metallic MaterialsE74 Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines1 This test

    13、 method is under the jurisdiction of ASTM Committee C09 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.61 onTesting for Strength.Current edition approved Feb. 1, 2017March 15, 2017. Published March 2017May 2017. Originally approved in 1921. Last previous edi

    14、tion approved in 20162017 asC39/C39M 16b.17. DOI: 10.1520/C0039_C0039M-17.10.1520/C0039_C0039M-17A.2 For referencedASTM standards, visit theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Docu

    15、ment Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM r

    16、ecommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box

    17、 C700, West Conshohocken, PA 19428-2959. United States1Manual of Aggregate and Concrete Testing3. Terminology3.1 DefinitionsFor definitions of terms used in this practice, refer to Terminology C125.3.2 Definitions of Terms Specific to This Standard:3.2.1 bearing block, nsteel piece to distribute the

    18、 load from the testing machine to the specimen.3.2.2 lower bearing block, nsteel piece placed under the specimen to distribute the load from the testing machine to thespecimen.3.2.2.1 DiscussionThe lower bearing block provides a readily machinable surface for maintaining the specified bearing surfac

    19、e. The lower bearingblock may also be used to adapt the testing machine to various specimen heights. The lower bearing block is also referred to asbottom block,plain block, and false platen.3.2.3 platen, nprimary bearing surface of the testing machine.3.2.3.1 DiscussionThe platen is also referred to

    20、 as the testing machine table.3.2.4 spacer, nsteel piece used to elevate the lower bearing block to accommodate test specimens of various heights.3.2.4.1 DiscussionSpacers are not required to have hardened bearing faces because spacers are not in direct contact with the specimen or the retainersof u

    21、nbonded caps.3.2.5 upper bearing block, nsteel assembly suspended above the specimen that is capable of tilting to bear uniformly on thetop of the specimen.3.2.5.1 DiscussionThe upper bearing block is also referred to as the spherically seated block and the suspended block.4. Summary of Test Method4

    22、.1 This test method consists of applying a compressive axial load to molded cylinders or cores at a rate which is within aprescribed range until failure occurs. The compressive strength of the specimen is calculated by dividing the maximum loadattained during the test by the cross-sectional area of

    23、the specimen.5. Significance and Use5.1 Care must be exercised in the interpretation of the significance of compressive strength determinations by this test methodsince strength is not a fundamental or intrinsic property of concrete made from given materials. Values obtained will depend onthe size a

    24、nd shape of the specimen, batching, mixing procedures, the methods of sampling, molding, and fabrication and the age,temperature, and moisture conditions during curing.5.2 This test method is used to determine compressive strength of cylindrical specimens prepared and cured in accordance withPractic

    25、es C31/C31M, C192/C192M, C617/C617M, C1176/C1176M, C1231/C1231M, and C1435/C1435M, and Test MethodsC42/C42M, C873/C873M, and C1604/C1604M.5.3 The results of this test method are used as a basis for quality control of concrete proportioning, mixing, and placingoperations; determination of compliance

    26、with specifications; control for evaluating effectiveness of admixtures; and similar uses.5.4 The individual who tests concrete cylinders for acceptance testing shall meet the concrete laboratory technicianrequirements of Practice C1077, including an examination requiring performance demonstration t

    27、hat is evaluated by anindependent examiner.NOTE 1Certification equivalent to the minimum guidelines for ACI Concrete Laboratory Technician, Level I or ACI Concrete Strength TestingTechnician will satisfy this requirement.6. Apparatus6.1 Testing MachineThe testing machine shall be of a type having su

    28、fficient capacity and capable of providing the rates ofloading prescribed in 8.5.C39/C39M 17a26.1.1 Verify the accuracy of the testing machine in accordance with Practices E4, except that the verified loading range shallbe as required in 6.4. Verification is required:6.1.1.1 Within 13 months of the

    29、last calibration,6.1.1.2 On original installation or immediately after relocation,6.1.1.3 Immediately after making repairs or adjustments that affect the operation of the force applying system or the valuesdisplayed on the load indicating system, except for zero adjustments that compensate for the m

    30、ass of bearing blocks or specimen,or both, or6.1.1.4 Whenever there is reason to suspect the accuracy of the indicated loads.6.1.2 DesignThe design of the machine must include the following features:6.1.2.1 The machine must be power operated and must apply the load continuously rather than intermitt

    31、ently, and without shock.If it has only one loading rate (meeting the requirements of 8.5), it must be provided with a supplemental means for loading ata rate suitable for verification. This supplemental means of loading may be power or hand operated.6.1.2.2 The space provided for test specimens sha

    32、ll be large enough to accommodate, in a readable position, an elasticcalibration device which is of sufficient capacity to cover the potential loading range of the testing machine and which complieswith the requirements of Practice E74.NOTE 2The types of elastic calibration devices most generally av

    33、ailable and most commonly used for this purpose are the circular proving ring orload cell.6.1.3 AccuracyThe accuracy of the testing machine shall be in accordance with the following provisions:6.1.3.1 The percentage of error for the loads within the proposed range of use of the testing machine shall

    34、 not exceed 61.0 %of the indicated load.6.1.3.2 The accuracy of the testing machine shall be verified by applying five test loads in four approximately equal incrementsin ascending order. The difference between any two successive test loads shall not exceed one third of the difference between themax

    35、imum and minimum test loads.6.1.3.3 The test load as indicated by the testing machine and the applied load computed from the readings of the verificationdevice shall be recorded at each test point. Calculate the error, E, and the percentage of error, Ep, for each point from these dataas follows:E 5A

    36、 2B (1)Ep 5100A 2B!/Bwhere:A = load, kN lbf indicated by the machine being verified, andB = applied load, kN lbf as determined by the calibrating device.6.1.3.4 The report on the verification of a testing machine shall state within what loading range it was found to conform toT R rr = radius of sphe

    37、rical portion of upper bearing blockR = nominal radius of specimenT = thickness of upper bearing block extending beyond the sphereFIG. 1 Schematic Sketch of a Typical Upper Bearing BlockC39/C39M 17a3specification requirements rather than reporting a blanket acceptance or rejection. In no case shall

    38、the loading range be stated asincluding loads below the value which is 100 times the smallest change of load estimable on the load-indicating mechanism ofthe testing machine or loads within that portion of the range below 10 % of the maximum range capacity.6.1.3.5 In no case shall the loading range

    39、be stated as including loads outside the range of loads applied during the verificationtest.6.1.3.6 The indicated load of a testing machine shall not be corrected either by calculation or by the use of a calibration diagramto obtain values within the required permissible variation.6.2 Bearing Blocks

    40、The upper and lower bearing blocks shall conform to the following requirements:6.2.1 Bearing blocks shall be steel with hardened bearing faces (Note 3).6.2.2 Bearing faces shall have dimensions at least 3 % greater than the nominal diameter of the specimen.6.2.3 Except for the inscribed concentric c

    41、ircles described in 6.2.4.7, the bearing faces shall not depart from a plane by morethan 0.02 mm 0.001 in. along any 150 mm 6 in. length for bearing blocks with a diameter of 150 mm 6 in. or larger, or bymore than 0.02 mm 0.001 in. in any direction of smaller bearing blocks. New bearing blocks shall

    42、 be manufactured within onehalf of this tolerance.NOTE 3It is desirable that the bearing faces of bearing blocks have a Rockwell hardness at least 55 HRC as determined by Test Methods E18.NOTE 4Square bearing faces are permissible for the bearing blocks.6.2.4 Upper Bearing BlockThe upper bearing blo

    43、ck shall conform to the following requirements:6.2.4.1 The upper bearing block shall be spherically seated and the center of the sphere shall coincide with the center of thebearing face within 65 % of the radius of the sphere.6.2.4.2 The ball and the socket shall be designed so that the steel in the

    44、 contact area does not permanently deform when loadedto the capacity of the testing machine.NOTE 5The preferred contact area is in the form of a ring (described as preferred bearing area) as shown in Fig. 1.6.2.4.3 Provision shall be made for holding the upper bearing block in the socket. The design

    45、 shall be such that the bearing facecan be rotated and tilted at least 4 in any direction.6.2.4.4 If the upper bearing block is a two-piece design composed of a spherical portion and a bearing plate, a mechanical meansshall be provided to ensure that the spherical portion is fixed and centered on th

    46、e bearing plate.6.2.4.5 The diameter of the sphere shall be at least 75 % of the nominal diameter of the specimen. If the diameter of the sphereis smaller than the diameter of the specimen, the portion of the bearing face extending beyond the sphere shall have a thicknessnot less than the difference

    47、 between the radius of the sphere and radius of the specimen (see Fig. 1). The least dimension of thebearing face shall be at least as great as the diameter of the sphere.6.2.4.6 The dimensions of the bearing face of the upper bearing block shall not exceed the following values:Nominal Diameterof Sp

    48、ecimen,mm in.Maximum Diameterof Round BearingFace, mm in.Maximum Dimensionsof Square BearingFace, mm in.50 2 105 4 105 by 105 4 by 475 3 130 5 130 by 130 5 by 5100 4 165 6.5 165 by 165 6.5 by 6.5150 6 255 10 255 by 255 10 by 10200 8 280 11 280 by 280 11 by 116.2.4.7 If the diameter of the bearing fa

    49、ce of the upper bearing block exceeds the nominal diameter of the specimen by morethan 13 mm 0.5 in., concentric circles not more than 0.8 mm 0.03 in. deep and not more than 1 mm 0.04 in. wide shall beinscribed on the face of upper bearing block to facilitate proper centering.6.2.4.8 At least every six months, or as specified by the manufacturer of the testing machine, clean and lubricate the curvedsurfaces of the socket and of the spherical portion of the upper bearing block. The lubricant shall


    注意事项

    本文(ASTM C39 C39M-2017a Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens《圆柱型混凝土试样抗压强度的标准试验方法》.pdf)为本站会员(livefirmly316)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开