欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM C1182-2009 Standard Test Method for Determining the Particle Size Distribution of Alumina by Centrifugal Photosedimentation《用离心测光沉淀法测定矾土的粒径分布用标准试验方法》.pdf

    • 资源ID:463652       资源大小:70.39KB        全文页数:3页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM C1182-2009 Standard Test Method for Determining the Particle Size Distribution of Alumina by Centrifugal Photosedimentation《用离心测光沉淀法测定矾土的粒径分布用标准试验方法》.pdf

    1、Designation: C 1182 09Standard Test Method forDetermining the Particle Size Distribution of Alumina byCentrifugal Photosedimentation1This standard is issued under the fixed designation C 1182; the number immediately following the designation indicates the year oforiginal adoption or, in the case of

    2、revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers the determination of the particlesize distribution of alumina in the ra

    3、nge from 0.1 to 20 mhaving a median particle diameter from 0.5 to 5.0 m.1.2 The procedure described in this test method may besuccessfully applied to other ceramic powders in this generalsize range. It is the responsibility of the user to determine theapplicability of this test method to other mater

    4、ial.1.3 The values stated in SI units are to regarded as thestandard. The values given in parentheses are for informationonly.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish ap

    5、pro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:C 242 Terminology of Ceramic Whitewares and RelatedProductsE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Te

    6、st MethodE 177 Practice for Use of the Terms Precision and Bias inASTM Test Methods3. Terminology3.1 Definitions:3.1.1 Refer to Terminology C 242 for definitions of termsused in this test method.4. Summary of Test Method4.1 A homogeneous aqueous dispersion of the powder isprepared. While kept in a t

    7、horoughly mixed condition, a smallaliquot is transferred to the analyzer sample cell, which isplaced in the instrument and subjected to a controlled centrifu-gal acceleration at a known or controlled temperature. Atpredetermined times related to the sedimentation of specificStokes diameters (Note 1)

    8、, the optical absorbance is recordedand ratioed to the initial value to determine the fraction of thetotal sample that has sedimented a specific distance. A volumebased size distribution is calculated from the absorbance-timedata. Since alumina particles are not truly spherical, the resultsare repor

    9、ted as equivalent diameters (spherical) (Note 2).NOTE 1This diameter in micrometres is referred to as D in theequation:D2518 n H/t!rs2rf!u23 108(1)where:n = viscosity of the fluid, P,H = height of the settling particles, cm,t = time for particle to settle, s,rs= particle density, g/cm3,rf= fluid den

    10、sity, g/cm3, andu = the rotational velocity, cm/s.NOTE 2Refer to Terminology C 242 for the ASTM definition of thisterm. Most equipment manufacturers refer to this as the equivalentspherical diameter.4.2 The instruments that have been found suitable for thistest method incorporate microcomputers that

    11、 control instru-ment operation and perform all required data acquisition andcomputation functions.5. Significance and Use5.1 Manufacturers and users of alumina powders will findthis test method useful to determine the particle size distribu-tion of these materials for product specification, quality

    12、con-trol, and research and development testing.6. Apparatus6.1 Centrifugal Particle Size Distribution AnalyzerTheanalyzer shall incorporate a centrifuge capable of subjecting ahomogeneous dispersion of the sample to centrifugal accelera-tion in specially designed sample cells. A collimated beam ofvi

    13、sible light (either monochromatic or broad-band) shalltraverse the sample cell at a defined distance from the top of the1This test method is under the jurisdiction ofASTM Committee C21 on CeramicWhitewares and Related Products and is the direct responsibility of SubcommitteeC21.04 on Raw Materials.C

    14、urrent edition approved Jan. 1, 2009. Published February 2009. Originallyapproved in 1991. Last previous edition approved in 2007 as C 118291(2007).1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken,

    15、PA 19428-2959, United States.cell. The change in photo extinction resulting from sedimen-tation of the sample shall be measured by a photo detector andappropriate electronic circuits, and used to calculate thevolume-based sized distribution of the sample.6.2 Ultrasonic Probe, consisting of power uni

    16、t, ultrasonictransducer, and 13-mm (12-in.) diameter probe, 200 to 250 W.6.3 Ultrasonic Water Bath, power density approximately 0.3W/cm2(2 W/in.2).6.4 Balance, top-loading, accurate to 60.1 g.6.5 Stirrer, magnetic, with 25-mm (1-in.) and 19-mm (34-in.) stirring bars.6.6 Thermometer, 0 to 50C, accura

    17、te to 0.5C. May also bean electronic temperature measuring device, properly cali-brated, that meets the given specifications.6.7 Sample Cells, as supplied by the instrument manufac-turer.7. Reagents7.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, i

    18、t is intended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.2Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its

    19、 use without lessening theprecision of the determination.7.2 Sodium Hexametaphosphate Solution, 0.1 %Tare a50-mL beaker on the balance. Weigh 1.0 6 0.1 g of sodiumhexametaphosphate into the beaker. Add 30 to 40 mL ofdistilled or deionized water and dissolve the salt. Pour thesolution into the volume

    20、tric flask, rinse the beaker twice withwater, and pour into the flask. Make up the volume to 1000 mLand mix thoroughly. Store in a stoppered glass or polyethylenereagent bottle labeled with the contents and date of preparation.Discard any solution after six weeks of storage.NOTE 3These reagents are

    21、adequate to cover the range of samples upto a maximum diameter of 20 m.8. Procedure8.1 Sample Preparation and Dispersion:8.1.1 Withdraw approximately1gofathoroughly mixedpowdered sample (or an equivalent amount of a slurriedsample) and place into a 250-mL beaker. If the sample isreceived in a plasti

    22、c or glass vial containing about 1 g (60.25g), transfer the entire contents to the 250-mL beaker. Add 200mL of 0.1 % sodium hexametaphosphate solution and mix wellby stirring. Disperse by either of the following methods:8.1.1.1 Ultrasonic BathPlace the beaker in the bath withthe bottom of the beaker

    23、 suspended above the bottom of thebath. In the ideal position, the top of the fluid in the beaker iseven with the liquid level in the bath. Apply ultrasonic energyfor 15 min with frequent stirring. Remove beaker from bath.8.1.1.2 Ultrasonic ProbeInsert the probe into the beakercontaining the sample

    24、and apply power for 30 s. Make sure thesample is well suspended during this step. Remove probe fromthe beaker.8.1.2 Add a 25-mm (1-in.) stirring bar to the beaker andplace on a magnetic stirrer. Stir for approximately 3 min in acold water bath to bring the sample to ambient temperature.Continue stir

    25、ring at constant temperature.NOTE 4The concentration of the sample may require dilution with0.1 % sodium hexametaphosphate solution to meet the optical absorbancetolerance specified in the instrument operating manual. Thorough mixingmust accompany any dilution of the sample.8.2 Analyzer Preparation:

    26、8.2.1 To warm up the analyzer, apply power a minimum of10 min prior to testing. Conduct the warm-up with the samplecompartment closed. Make certain that ventilation airflow isnot restricted by adjacent equipment, papers, or other materi-als. Check the printer to ensure a sufficient supply of paper.C

    27、lean a pair of sample cells and caps, rinse with the 0.1 %sodium hexametaphosphate solution and store inverted onabsorbent paper.8.2.2 If required by the manufacturers operating manual,check and adjust the zero and full-scale settings.8.2.3 Input the test parameters (sample and fluid density,fluid v

    28、iscosity, test range, sedimentation distance, (if required),and centrifuge speed) according to the manufacturers operat-ing manual. Set the fluid viscosity at the value corresponding tothe actual room temperature (see Table 1). Set the range suchthat the volume percent greater than the maximum diame

    29、ter iscertainly zero and the volume percent finer than the minimumdiameter is less than 10 % (cumulative percent oversize greaterthan 90 %). Preliminary test runs may be required to establishthe range and the size of the divisions needed to accomplishtest limits. The test range and division settings

    30、 shall provide aminimum of ten divisions within the test range.8.2.4 If required by the manufacturers operating manual,conduct a blank test with clean dispersant fluid in the sampleand reference cells.8.3 Test Performance:8.3.1 Adjust the rate of the magnetic stirrer to produce aslight vortex in the

    31、 sample dispersion. With a disposable plasticpipet, withdraw an appropriate volume of sample from thecenter of the dilute dispersion. Make certain that the dispersionis thoroughly mixed by vigorous pumping with the pipet (avoidsufficient agitation to create bubbles). Completely transfer thewithdrawn

    32、 sample portion to the drained sample cell. Insert thecell cap, carefully wipe all outer surfaces of the cell, place inthe centrifuge, and start the test. At the beginning of the test,monitor the absorbance display on the instrument to ensure thatthe initial absorbance is within the specified tolera

    33、nce. If not,refer to Note 4. When the test is completed, remove the samplecell, clean immediately, and rinse with dispersant fluid.2Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the Ameri

    34、can Chemical Society, see Analar Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmaceutical Convention, Inc. (USPC), Rockville,MD.TABLE 1 Viscosity Coefficients of WaterATemperature, C 20 21 22 23 24 25 26 27 28 29V

    35、iscosity coefficient,mPas or cP1.01 0.98 0.96 0.94 0.92 0.89 0.87 0.86 0.84 0.82AViscosity coefficient values to two decimal places have been found satisfactoryfor this test method.C11820929. Presentation of Data9.1 Analyzer PrintoutThe analyzers that have been foundsuitable for this test method ren

    36、der data printouts that providea permanent record of test conditions and graphic records ofthe size distribution. For many purposes, these printouts mayprovide sufficient information.10. Fluid Densities and Viscosity Coefficients10.1 Table 1 lists the viscosity coefficients for water over thetempera

    37、ture range from 20 to 29C. Use these values for thesodium hexametaphosphate solution. Use a density of 1.00g/mL for these solutions.11. Additional Data Presentations11.1 The analyzers that have been found suitable for usewith this test method produce a printed report that may includea cumulative siz

    38、e distribution table showing the volumepercent oversize, starting with the programmed maximumdiameter. The incremental divisions are, in some operatingmodes, selectable by the operator, and, in others, determinedby the microcomputer in the instrument.12. Precision and Bias12.1 PrecisionBased on the

    39、results of a multilaboratorystudy using the procedures and definitions of PracticesE 691 79 and E 177 80, and over the sample range includedin the study the precision is as follows:12.1.1 RepeatabilityThe within-laboratory repeatability is3.56 % (2s %) of the measured value.12.1.2 ReproducibilityBet

    40、ween-laboratory reproducibil-ity is 9.92 % (2s %) of the measured value.12.2 BiasSince no absolute method of particle size distri-bution is recognized, it is not possible to discuss the bias of theresults obtained using this test method.13. Keywords13.1 alumina; particle size distribution; photosedi

    41、mentationSUMMARY OF CHANGESCommittee C21 has identified the location of selected changes to this standard since the last issue(C 118291(2007) that may impact the use of this standard.(1) 1.3 was updated(2) Revision of 6.6 to remove reference to a mercury ther-mometer, and to allow the use of an elec

    42、tronic temperaturemeasuring device.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk

    43、of infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this

    44、 standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake y

    45、our views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).C1182093


    注意事项

    本文(ASTM C1182-2009 Standard Test Method for Determining the Particle Size Distribution of Alumina by Centrifugal Photosedimentation《用离心测光沉淀法测定矾土的粒径分布用标准试验方法》.pdf)为本站会员(sofeeling205)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开