欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASTM B546-2004(2014) Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617) Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332) Ni-Cr-Fe-Al Alloy (UNS N06603) .pdf

    • 资源ID:461520       资源大小:76.54KB        全文页数:4页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASTM B546-2004(2014) Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617) Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332) Ni-Cr-Fe-Al Alloy (UNS N06603) .pdf

    1、Designation: B546 04 (Reapproved 2014)Standard Specification forElectric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617),Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), andNi-Cr-Fe-Si Alloy (UNS N06045) Pipe1This standard is issued under the

    2、fixed designation B546; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last

    3、revision or reapproval.1. Scope1.1 This specification covers electric fusion-welded nickel-chromium-cobalt-molybdenum alloy UNS N06617, nickel-iron-chromium-silicon alloys UNS N08330 and UNS N08332,Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy UNSN06025, and Ni-Cr-Fe-Si Alloy UNS N06045 pipe intend

    4、edfor heat resisting applications and general corrosive service.1.2 This specification covers pipe in sizes 3 in. (76.2 mm)nominal diameter and larger and possessing a minimum wallthickness of 0.083 in. (2.11 mm).1.3 The values stated in inch-pound units are to be regardedas standard. The values giv

    5、en in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to become fam

    6、iliarwith all hazards including those identified in the appropriateMaterial Safety Data Sheet (MSDS) for this product/materialas provided by the manufacturer, to establish appropriatesafety and health practices, and determine the applicability ofregulatory limitations prior to use.2. Referenced Docu

    7、ments2.1 ASTM Standards:2B168 Specification for Nickel-Chromium-Iron Alloys (UNSN06600, N06601, N06603, N06690, N06693, N06025,N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Plate, Sheet,and StripB536 Specification for

    8、Nickel-Iron-Chromium-Silicon Al-loys (UNS N08330 and N08332) Plate, Sheet, and StripB775 Specification for General Requirements for Nickel andNickel Alloy Welded PipeB899 Terminology Relating to Non-ferrous Metals and Al-loysE10 Test Method for Brinell Hardness of Metallic MaterialsE140 Hardness Con

    9、version Tables for Metals RelationshipAmong Brinell Hardness, Vickers Hardness, RockwellHardness, Superficial Hardness, Knoop Hardness, Sclero-scope Hardness, and Leeb HardnessE1473 Test Methods for Chemical Analysis of Nickel,Cobalt, and High-Temperature Alloys2.2 ASME Standards:3Boiler and Pressur

    10、e Vessel Code, Section VIII ParagraphUW-51Boiler and Pressure Vessel Code, Section IX3. Terminology3.1 DefinitionsDefinitions for terms defined in Terminol-ogy B899 shall apply unless otherwise defined by the require-ments of this document.4. General Requirement4.1 Material furnished in accordance w

    11、ith this specificationshall conform to the applicable requirements of the currentedition of Specification B775 unless otherwise providedherein.5. Classification5.1 Two classes of pipe are covered as follows:5.1.1 Class 1All welded joints to be 100 % inspected byradiography.5.1.2 Class 2No radiograph

    12、ic examination is required.1This specification is under the jurisdiction of ASTM Committee B02 onNonferrous Metals and Alloys and is the direct responsibility of SubcommitteeB02.07 on Refined Nickel and Cobalt and Their Alloys.Current edition approved Oct. 1, 2014. Published October 2014. Originally

    13、approved in 1971. Last previous edition approved in 2009 as B546 04 (2009).DOI: 10.1520/B0546-04R14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Do

    14、cument Summary page onthe ASTM website.3Available from American Society of Mechanical Engineers (ASME), ASMEInternational Headquarters, Two Park Ave., New York, NY 10016-5990, http:/www.asme.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. Unite

    15、d States16. Ordering Information6.1 It is the responsibility of the purchaser to specify allrequirements that are necessary for the safe and satisfactoryperformance of material ordered under this specification.Examples of such requirements include, but are not limited to,the following:6.1.1 Alloy (T

    16、able 1),6.1.2 ASTM designation and year of issue,6.1.3 Class (See 5.1),6.1.4 Dimensions (standard pipe size and schedule),6.1.5 Length (specific or random),6.1.6 Quantity (feet or number of pieces),6.1.7 CertificationState if certification is required,6.1.8 Whether type of filler metal and deposited

    17、 composi-tion is required (see 8.3),6.1.9 Samples for Product (Check) AnalysisState whethersamples for product (check) analysis should be furnished, and6.1.10 Purchaser InspectionIf purchaser wishes to wit-ness tests or inspection of material at place of manufacture, thepurchase order must so state

    18、indicating which tests or inspec-tions are to be witnessed.7. Materials and Manufacture7.1 MaterialsThe UNS N08330 and UNS N08332 alloyplate material shall conform to the requirements of Specifica-tion B536. The UNS N06617, UNS N06603, UNS N06025,and UNS N06045 alloy plate material shall conform to

    19、therequirements of Specification B168.7.2 Welding:7.2.1 The joints shall be double-welded, full-penetrationwelds made by qualified operators in accordance with proce-dures in the ASME Boiler and Pressure Vessel Code, SectionIX.7.2.2 The weld shall be made either manually or automati-cally by an elec

    20、tric process involving the deposition of fillermetal.7.2.3 The joint shall be reinforced at the center of the weldon each side of the formed plate by a weld bead at least116 in.(1.6 mm) but not more than18 in. (3.2 mm). This reinforce-ment (weld bead) may be removed at the manufacturers optionor by

    21、agreement between the manufacturer and the purchaser.The contour of the reinforcement (weld bead) shall be smooth,with no valley or groove along the edge or in the center of theweld, and the deposited metal shall be fused smoothly anduniformly into the formed-plate surface. The finish of thewelded j

    22、oint shall be reasonably smooth and free ofirregularities, grooves, or depressions.7.2.4 Weld defects shall be repaired by removal to soundmetal and rewelding. Subsequent heat treatment and inspectionshall be as required on the original welds.7.3 Heat TreatmentAll pipe shall be furnished in theannea

    23、led condition.7.4 Surface FinishThe pipe shall be free from scale. Whenbright annealing is used, descaling is not necessary.8. Chemical Composition8.1 The material shall conform to the composition limitsspecified in Table 1. One test is required for each lot as definedin Specification B775.8.2 If a

    24、product analysis is performed, it shall meet thechemistry limits prescribed in Table 1, subject to the analysistolerances specified in Table 1 of Specification B775.8.3 The chromium and nickel content of the deposited weldmetal shall conform to the minimum chromium and nickelcontents required for th

    25、e base metal. Note that the compositionof the deposited weld metal may not be the same as the basemetal. The user should establish suitability for his particularapplication. When specified in the purchase order (see section6.1.8), the manufacturer shall report the type of filler metalused along with

    26、 a chemical analysis of the deposited weldmetal.TABLE 1 Chemical RequirementsElementComposition Limits, %N08330 N08332 N06603 N06617 N06025 N06045Carbon 0.08 max 0.050.10 0.20-0.40 0.050.15 0.150.25 0.050.12Manganese 2.00 max 2.00 max 0.15 max 1.0 max 0.15 max 1.0 maxPhosphorus 0.03 max 0.03 max 0.2

    27、0 max . 0.02 max 0.02 maxSulfur 0.03 max 0.03 max 0.10 max 0.015 max 0.010 max 0.010 maxSilicon 0.75 to 1.50 0.75 to 1.50 0.50 max 1.0 max 0.5 max 2.53.0Chromium 17.0 to 20.0 17.0 to 20.0 0.24-0.26 20.024.0 24.026.0 26.029.0Nickel 34.0 to 37.0 34.0 to 37.0 Bal remainder Bal 45.0 minCopper 1.00 max 1

    28、.00 max 0.50 max 0.5 max 0.1 max 0.3 maxLead 0.005 max 0.005 max . . . .Tin 0.025 max 0.025 max . . . .Iron remainderAremainder 8.011.0 3.0 max 8.011.0 21.025.0Aluminum . . 2.4-3.0 0.81.5 1.82.4 .Cobalt . . . 10.015.0 . .Molybdenum . . . 8.010.0 . .Zirconium . . 0.010.10 . 0.010.10 .Yttrium . . 0.01

    29、0.15 . 0.050.12 .Cerium . . . . . 0.30.09Titanium . . 0.010-0.025 . . .AElement shall be determined arithmetically by difference.B546 04 (2014)29. Mechanical and Other Requirements9.1 Tensile Properties:9.1.1 Transverse tension tests taken across the weld jointsshall meet the requirements shown in T

    30、able 2.9.2 Transverse Guided-Bend Weld Tests:9.2.1 Two bend test specimens shall be taken transverselyfrom the pipe. One shall be subject to a face guided-bend testand the second to a root guided-bend test.9.2.2 The bend test shall be acceptable if no cracks or otherdefects exceeding18 in. (3.2 mm)

    31、in any direction be present inthe weld metal or between the weld and the pipe metal afterbending. Cracks which originate along the edges of thespecimen during testing and that are less than14 in. (6.4 mm)measured in any direction, shall not be considered.9.3 Pressure (Leak) TestAny pipe that shows l

    32、eaks duringhydrostatic testing shall be rejected.9.4 Grain SizeAnnealed alloy UNS N08332 shall con-form to an average grain size of ASTM No. 5 or coarser.9.5 Annealing TemperatureAlloy UNS N08330 shall beannealed at 1900F (1040C) minimum. Alloy UNS N08332shall be annealed at 2100F (1150C) minimum. A

    33、lloy UNSN06617 shall be annealed at 2050F (1121C) minimum.AlloyUNS N06025 shall be annealed at 2100F (1150C) minimum.Alloy UNS N06603 and UNS N06045 shall be annealed at2120F (1160C) minimum.10. Permissible Variations in Dimensions10.1 Permissible VariationsThe dimensions at any pointin a length of

    34、pipe shall not exceed the following:10.1.1 Straightness, Using a 10-ft. (3.05-m) straightedgeplaced so that both ends are in contact with the pipe;18 in. (3.2mm).10.1.2 ThicknessThe minimum wall thickness at anypoint in the pipe shall not be more than 0.01 in. (0.25 mm)under the nominal thickness.10

    35、.2 Lengths:10.2.1 Circumferentially welded joints of the same qualityas the longitudinal joints shall be permitted by agreementbetween the manufacturer and the purchaser.11. Workmanship, Finish, and Appearance11.1 FinishPipe shall be furnished with oxide removed.When final test treatment is performe

    36、d in a protectiveatmosphere, descaling is not necessary.11.2 Weld Repair of Plate Defects Occurring During PipeFabricationRepair of injurious defects, which occur duringthe fabrication of the pipe from plate, shall be permitted onlysubject to the approval of the purchaser. Defects shall bethoroughly

    37、 checked out before welding. Inspection of welddefects shall be by radiographic or liquid-penetrant technique,at the option of the producer. If the pipe has already beenannealed, it shall be annealed again except in the case of smallvoids, that in the estimation of the purchasers inspector, do notre

    38、quire reannealing. Each length of repaired pipe shall besubjected to the hydrostatic test.12. Number of Tests Required12.1 Transverse Tension TestOne test shall be made torepresent each lot of finished pipe.12.2 Transverse Guided-Bend Weld TestTwo tests shall bemade to represent each lot of finished

    39、 pipe.12.3 Grain Size, HardnessOne test per lot.12.4 Pressure (Leak) TestEach length of pipe shall besubjected to the hydrostatic test.12.5 Chemical AnalysisOne test per lot.13. Specimen Preparation13.1 Transverse-tension and bend-test specimens shall betaken from the end of the finished pipe; the t

    40、ransverse-tensionand bend-test specimens shall be flattened cold before finalmachining to size.13.2 As an alternative to the requirements of 13.1, the testspecimens may be taken from a test plate of the same materialas the pipe, which is attached to the end of the cylinder andwelded as a prolongatio

    41、n of the pipe longitudinal seam.13.3 Tension specimens shall be the full thickness of thematerial and shall be machined to the form and dimensionsshown for large diameter products in Specification B775.13.4 The test specimens shall not be cut from the pipe or testplate until after final anneal.14. T

    42、est Methods14.1 Chemical CompositionIn case of disagreement, thechemical composition shall be determined in accordance withTest Methods E1473.14.2 Brinell HardnessTest Method E10.TABLE 2 Mechanical PropertiesAlloy ConditionTensile Strength,min, psi (MPa)Yield Strength,0.2 %, offset,min, psi (MPa)Elo

    43、ngation in 2 in.or 50 mm,or 4D, min, %HardnessAUNS N08330 Annealed 70 000 (483) 30 000 (207) 30 70 to 90 HRBUNS N08332 Annealed 67 000 (462) 27 000 (186) 30 65 to 88 HRBUNS N06603 Annealed 94 000 (650) 43 000 (300) 25 .UNS N06617 Annealed 95 000 (655) 35 000 (240) 30 .UNS N06025 Annealed 98 000 (680

    44、) 39 000 (270) 30 .UNS N06045 Annealed 90 000 (620) 35 000 (240) 30 .AHardness values are informative only and not to be construed as the basis for acceptance.B546 04 (2014)314.3 Pressure (Leak) TestEach length of pipe shall betested based on allowable fiber stress, for material as follows:UNS N0661

    45、723 300 psi (or 161 MPa)UNS N0833017 500 psi (or 121 MPa)UNS N0833216 600 psi (or 114 MPa)UNS N0602524 500 psi (or 169 MPa)UNS N0604522 500 psi (or 155 MPa)UNS N0660324 000 psi (or 165 MPa)14.3.1 Visual examination is to be made when the materialis under pressure for hydrostatic testing. The full le

    46、ngth ofmaterial must be examined for leaks.14.4 Hardness ConversionHardness Conversion TablesE140.14.5 Radiographic Examination:14.5.1 For Class 1 welded-joint quality, all welded jointsshall be 100 % inspected by radiography.14.5.2 Radiographic examination shall be in accordancewith the requirement

    47、s of ASME Boiler and Pressure VesselCode, Section VIII, latest edition, Paragraph UW-51.15. Packaging and Package Marking15.1 Pipes which have been weld repaired in accordancewith 7.2.4 shall be marked WR.16. Keywords16.1 fusion-welded pipe; N08330; N08332; N06603;N06617; N06025; N06045ASTM Internat

    48、ional takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely the

    49、ir own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not receiv


    注意事项

    本文(ASTM B546-2004(2014) Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617) Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332) Ni-Cr-Fe-Al Alloy (UNS N06603) .pdf)为本站会员(postpastor181)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开