欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ASHRAE FUNDAMENTALS SI CH 4-2017 Heat Transfer.pdf

    • 资源ID:454844       资源大小:3.61MB        全文页数:36页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ASHRAE FUNDAMENTALS SI CH 4-2017 Heat Transfer.pdf

    1、4.1CHAPTER 4HEAT TRANSFERHeat Transfer Processes . 4.1Thermal Conduction 4.3Thermal Radiation 4.11Thermal Convection 4.17Heat Exchangers . 4.22Heat Transfer Augmentation. 4.24Symbols . 4.31EAT transfer is energy transferred because of a temperatureH difference. Energy moves from a higher-temperature

    2、 region toa lower-temperature region by one or more of three modes:conduction, radiation, and convection. This chapter presents ele-mentary principles of single-phase heat transfer, with emphasis onHVAC applications. Boiling and condensation are discussed inChapter 5. More specific information on he

    3、at transfer to or frombuildings or refrigerated spaces can be found in Chapters 14 to 19,23, and 27 of this volume and in Chapter 24 of the 2014 ASHRAEHandbookRefrigeration. Physical properties of substances can befound in Chapters 26, 28, 32, and 33 of this volume and in Chapter19 of the 2014 ASHRA

    4、E HandbookRefrigeration. Heat transferequipment, including evaporators, condensers, heating and coolingcoils, furnaces, and radiators, is covered in the 2016 ASHRAE Hand-bookHVAC Systems and Equipment. For further information onheat transfer, see the Bibliography.1. HEAT TRANSFER PROCESSESConduction

    5、Consider a wall that is 10 m long, 3 m tall, and 100 mm thick (Fig-ure 1A). One side of the wall is maintained at ts1= 25C, and theother is kept at ts2= 20C. Heat transfer occurs at rate q through thewall from the warmer side to the cooler. The heat transfer mode isconduction (the only way energy ca

    6、n be transferred through a solid).If ts1is raised from 25 to 30C while everything else remains thesame, q doubles because ts1 ts2doubles.If the wall is twice as tall, thus doubling the area Acof the wall, qdoubles.If the wall is twice as thick, q is halved.From these relationships,q where means “pro

    7、portional to” and L = wall thickness. However,this relation does not take wall material into account; if the wall werefoam instead of concrete, q would clearly be less. The constant ofproportionality is a material property, thermal conductivity k.Thus,q = k (1)where k has units of W/(mK). The denomi

    8、nator L/(kAc) can be con-sidered the conduction resistance associated with the drivingpotential (ts1 ts2). This is analogous to current flow through an elec-trical resistance, I = (V1 V2)/R, where (V1 V2) is driving potential,R is electrical resistance, and current I is rate of flow of chargeinstead

    9、 of rate of heat transfer q.Thermal resistance has units K/W. A wall with a resistance of5 K/W requires (ts1 ts2) = 5 K for heat transfer q of 1 W. The ther-mal/electrical resistance analogy allows tools used to solve electricalcircuits to be used for heat transfer problems.ConvectionConsider a surf

    10、ace at temperature tsin contact with a fluid at t(Figure 1B). Newtons law of cooling expresses the rate of heattransfer from the surface of area Asasq = hcAs(ts t) = (2)where hcis the heat transfer coefficient (Table 1) and has unitsof W/(m2K). The convection resistance 1/(hcAs) has units of K/W.If

    11、t ts, heat transfers from the fluid to the surface, and q is writ-ten as just q = hcAs(t ts). Resistance is the same, but the sign of thetemperature difference is reversed.For heat transfer to be considered convection, fluid in contactwith the surface must be in motion; if not, the mode of heat tran

    12、sferis conduction. If fluid motion is caused by an external force (e.g.,fan, pump, wind), it is forced convection. If fluid motion resultsfrom buoyant forces caused by the surface being warmer or coolerthan the fluid, it is free (or natural) convection.The preparation of this chapter is assigned to

    13、TC 1.3, Heat Transfer andFluid Flow.Fig. 1 (A) Conduction and (B) Convectionts1ts2AcL-Table 1 Heat Transfer Coefficients by Convection TypeConvection Type hc, W/(m2K)Free, gases 2 to 25Free, liquids 10 to 1000Forced, gases 25 to 250Forced, liquids 50 to 20 000Boiling, condensation 2500 to 100 000ts1

    14、ts2AcL-ts1ts2LkAc-=tst1 hcAs-4.2 2017 ASHRAE HandbookFundamentals (SI)RadiationMatter emits thermal radiation at its surface when its temperatureis above absolute zero. This radiation is in the form of photons ofvarying frequency. These photons leaving the surface need nomedium to transport them, un

    15、like conduction and convection (inwhich heat transfer occurs through matter). The rate of thermalradiant energy emitted by a surface depends on its absolute tempera-ture and its surface characteristics. A surface that absorbs all radia-tion incident upon it is called a black surface, and emits energ

    16、y atthe maximum possible rate at a given temperature. The heat emis-sion from a black surface is given by the Stefan-Boltzmann law:qemitted, black = AsWb= AsTs4where Wb= Ts4 is the blackbody emissive power in W/m2; Tsisabsolute surface temperature, K; and = 5.67 108W/(m2K4) isthe Stefan-Boltzmann co

    17、nstant. If a surface is not black, the emissionper unit time per unit area isW = Wb= Ts4where W is emissive power, and is emissivity, where 0 1. Fora black surface, = 1.Nonblack surfaces do not absorb all incident radiation. Theabsorbed radiation isqabsorbed= AsGwhere absorptivity is the fraction of

    18、 incident radiation absorbed,and irradiation G is the rate of radiant energy incident on a surfaceper unit area of the receiving surface. For a black surface, = 1.A surfaces emissivity and absorptivity are often both functionsof the wavelength distribution of photons emitted and absorbed,respectivel

    19、y, by the surface. However, in many cases, it is reason-able to assume that both and are independent of wavelength. Ifso, = (a gray surface).Two surfaces at different temperatures that can “see” each othercan exchange energy through radiation. The net exchange ratedepends on the surfaces (1) relativ

    20、e size, (2) relative orientation andshape, (3) temperatures, and (4) emissivity and absorptivity.However, for a small area Asin a large enclosure at constant tem-perature tsurr, the irradiation on Asfrom the surroundings is theblackbody emissive power of the surroundings Wb,surr. So, if tstsurr, net

    21、 heat loss from gray surface Asin the radiation exchangewith the surroundings at Tsurrisqnet= qemitted qabsorbed= AsWbs AsWb,surr= As(Ts4 T4surr)(3)where = for the gray surface. If tsL/5Corner of three adjoining walls (inner surface at T1and outer surface at T2)0.15LL WL d, W, HThin isothermal recta

    22、ngular plate buried in semi-infinite mediumd = 0, W Ld WW Ld 2WW LCylinder centered inside square of length LL WW 2RIsothermal cylinder buried in semi-infinite medium L RL Rd 3Rd RL dHorizontal cylinder of length L midway between two infinite, parallel, isothermal surfacesL dIsothermal sphere in sem

    23、i-infinite mediumIsothermal sphere in infinite medium 4R2.756L1dW-+ln0.59-Hd-0.078Wln 4WL-2Wln 4WL-2Wln 2dL-2Lln 0.54WR-2Lcosh1dR-2Lln 2dR-2LlnLR- 1ln L 2dln LR-2Lln4dR-4R1 R 2d-4.6 2017 ASHRAE HandbookFundamentals (SI)Extended SurfacesHeat transfer from a surface can be increased by attaching finso

    24、r extended surfaces to increase the area available for heat transfer.A few common fin geometries are shown in Figures 5 to 8. Fins pro-vide a large surface area in a low volume, thus lowering materialcosts for a given performance. To achieve optimum design, fins aregenerally located on the side of t

    25、he heat exchanger with lower heattransfer coefficients (e.g., the air side of an air-to-water coil).Equipment with extended surfaces includes natural- and forced-convection coils and shell-and-tube evaporators and condensers.Fins are also used inside tubes in condensers and dry expansionevaporators.

    26、Fin Efficiency. As heat flows from the root of a fin to its tip, tem-perature drops because of the fin materials thermal resistance. Thetemperature difference between the fin and surrounding fluid istherefore greater at the root than at the tip, causing a correspondingvariation in heat flux. Therefo

    27、re, increases in fin length result in pro-portionately less additional heat transfer. To account for this effect,fin efficiency is defined as the ratio of the actual heat transferredfrom the fin to the heat that would be transferred if the entire finwere at its root or base temperature: = (6)where q

    28、 is heat transfer rate into/out of the fins root, teis tempera-ture of the surrounding environment, tris temperature at fin root,and Asis surface area of the fin. Fin efficiency is low for long or thinfins, or fins made of low-thermal-conductivity material. Fin effi-ciency decreases as the heat tran

    29、sfer coefficient increases because ofincreased heat flow. For natural convection in air-cooled condensersand evaporators, where the air-side h is low, fins can be fairly largeand fabricated from low-conductivity materials such as steel insteadof from copper or aluminum. For condensing and boiling, w

    30、herelarge heat transfer coefficients are involved, fins must be very shortfor optimum use of material. Fin efficiencies for a few geometriesare shown in Figures 5 to 8. Temperature distribution and fin effi-ciencies for various fin shapes are derived in most heat transfertexts.Fig. 6 Efficiency of A

    31、nnular Fins with Constant Metal Area for Heat FlowFig. 7 Efficiency of Several Types of Straight Fins Fig. 8 Efficiency of Four Types of SpinesqhAstrte-Heat Transfer 4.7Constant-Area Fins and Spines. For fins or spines with constantcross-sectional area e.g., straight fins (option A in Figure 7), cy-

    32、lindrical spines (option D in Figure 8), the efficiency can be cal-culated as = (7)wherem =P = fin perimeterAc= fin cross-sectional areaWc= corrected fin/spine length = W + Ac/PAc/P = d/4 for a cylindrical spine with diameter d= a/4 for an a a square spine= yb= /2 for a straight fin with thickness E

    33、mpirical Expressions for Fins on Tubes. Schmidt (1949) pres-ents approximate, but reasonably accurate, analytical expressions(for computer use) for the fin efficiency of circular, rectangular, andhexagonal arrays of fins on round tubes, as shown in Figures 5, 9,and 10, respectively. Rectangular fin

    34、arrays are used for an in-linetube arrangement in finned-tube heat exchangers, and hexagonalarrays are used for staggered tubes. Schmidts empirical solution isgiven by = (8)where rbis tube radius, m = , = fin thickness, and Z isgiven by Z = (re /rb) 11 + 0.35 ln(re /rb)where reis the actual or equiv

    35、alent fin tip radius. For circular fins,re /rbis the actual ratio of fin tip radius to tube radius. For rectangu-lar fins (Figure 9),re /rb = 1.28 = M/rb = L/M 1where M and L are defined by Figure 9 as a/2 or b/2, depending onwhich is greater. For hexagonal fins (Figure 10),re /rb = 1.27 where and a

    36、re defined as previously, and M and L are defined byFigure 10 as a/2 or b (whichever is less) and 0.5 ,respectively.For constant-thickness square fins on a round tube (L = M in Fig-ure 9), the efficiency of a constant-thickness annular fin of the samearea can be used. For more accuracy, particularly

    37、 with rectangularfins of large aspect ratio, divide the fin into circular sectors asdescribed by Rich (1966).Other sources of information on finned surfaces are listed in theReferences and Bibliography.Surface Efficiency. Heat transfer from a finned surface (e.g., atube) that includes both fin area

    38、As and unfinned or prime area Apisgiven byq = (hpAp+ hsAs)(tr te)(9)Assuming the heat transfer coefficients for the fin and prime sur-faces are equal, a surface efficiency scan be derived ass= (10)where A = As+ Apis the total surface area, the sum of the fin andprime areas. The heat transfer in Equa

    39、tion (8) can then be written asq = shA(tr te) = (11)where 1/(shA) is the finned surface resistance.Example 3. An aluminum tube with k = 186 W/(mK), ID = 45 mm, andOD = 50 mm has circular aluminum fins = 1 mm thick with an outerdiameter of Dfin= 100 mm. There are N = 250 fins per metre of tubelength.

    40、 Steam condenses inside the tube at ti= 200C with a large heattransfer coefficient on the inner tube surface. Air at t= 25C isheated by the steam. The heat transfer coefficient outside the tube is40 W/(m2K). Find the rate of heat transfer per metre of tube length.Solution: From Figure 5s efficiency

    41、curve, the efficiency of these cir-cular fins isThe fin area for L = 1 m isAs= 250 2(Dfin2 OD2)/4 = 2.945 m2The unfinned area for L = 1 m isAp= OD L(1 N) = (0.05 m)(1 m)(1 250 0.001) = 0.118 m2and the total area A = As+ Ap= 3.063 m2. Surface efficiency ismWctanhmWc-hP kAcmrbZtanhmrbZ-2hkFig. 9 Recta

    42、ngular Tube Array 0.2 0.3a 22b2+ApAs+A-trte1 shA-Fig. 10 Hexagonal Tube ArrayWDfinOD2 0.10 0.052 0.025 m= =XeXb0.10 0.05 2.0Whk 2-0.02540 W/(m2K)186 W mK0.0005 m-0.52 0.89=4.8 2017 ASHRAE HandbookFundamentals (SI)s= = 0.894and resistance of the finned surface isRs= = 9.13 103K/WTube wall resistance

    43、isThe rate of heat transfer is thenq = = 18 981 WHad Schmidts approach been used for fin efficiency,m = = 20.74 m1rb= OD/2 = 0.025 mZ = (Dfin/OD) 11 + 0.35 ln(Dfin/OD) = 1.243 = = 0.88the same as given by Figure 5.Contact Resistance. Fins can be extruded from the prime surface(e.g., short fins on tu

    44、bes in flooded evaporators or water-cooled con-densers) or can be fabricated separately, sometimes of a differentmaterial, and bonded to the prime surface. Metallurgical bonds areachieved by furnace-brazing, dip-brazing, or soldering; nonmetallicbonding materials, such as epoxy resin, are also used.

    45、 Mechanicalbonds are obtained by tension-winding fins around tubes (spiral fins)or expanding the tubes into the fins (plate fins). Metallurgical bond-ing, properly done, leaves negligible thermal resistance at the jointbut is not always economical. Contact resistance of a mechanicalbond may or may n

    46、ot be negligible, depending on the application,quality of manufacture, materials, and temperatures involved. Testsof plate-fin coils with expanded tubes indicate that substantial lossesin performance can occur with fins that have cracked collars, but neg-ligible contact resistance was found in coils with continuous collarsand properly expanded tubes (Dart 1959).Contact resistance at an interface between two solids is largely afunction of the surface properties and characteristics of the solids,contact pressure, and fluid in the interface, if any. Eckels (1977)modeled the infl


    注意事项

    本文(ASHRAE FUNDAMENTALS SI CH 4-2017 Heat Transfer.pdf)为本站会员(ownview251)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开