欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ANSI NEMA C29.1-1988 Test Methods for Electrical Power Insulators.pdf

    • 资源ID:437524       资源大小:534.45KB        全文页数:28页
    • 资源格式: PDF        下载积分:10000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要10000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ANSI NEMA C29.1-1988 Test Methods for Electrical Power Insulators.pdf

    1、NEMA Standards PublicationNational Electrical Manufacturers AssociationANSI/NEMA C29.1-1988 (R2012)Test Methods for Electrical Power InsulatorsANSI/NEMA C29.1-1988 (R2002, R2012) American National Standard Test Methods for Electrical Power Insulators Secretariat: National Electrical Manufacturers As

    2、sociation Approved: September 2012 Published: July 2013 American National Standards Institute, Inc. NOTICE AND DISCLAIMER The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was develo

    3、ped. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document. American National Standards Institute (ANSI) standards and guideline publications, of which the document contained herein is one, are developed through a v

    4、oluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus,

    5、 it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications. NEMA disclaims liability for any personal injury, property, or other damage

    6、s of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of

    7、 any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or sellers products or services by virtue of this st

    8、andard or guide. In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should re

    9、ly on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the

    10、 user may wish to consult for additional views or information not covered by this publication. NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health

    11、 purposes. Any certification or other statement of compliance with any health or safetyrelated information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement. AMERICAN NATIONAL STANDARD Approval of an American National Stand

    12、ard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and m

    13、aterially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely

    14、 voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standa

    15、rds and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should b

    16、e addressed to the secretariat or sponsor whose name appears on the title page of this standard. Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm,

    17、 revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute. Published by National Electrical Manufacturers Association 1300 North 17th Street, Rosslyn, VA 22209 Copyrig

    18、ht 2013 by National Electrical Manufacturers Association All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Convent

    19、ions. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. Printed in the United States of America. C29.1-1988 (R2002, R2012) Page i Copyright 2013 by the National Electrical Manufacturers As

    20、sociation FOREWORD (This foreword is not part of American National Standard C29.1-1988 (R2002, R2012) This standard comprises a manual of procedures to be followed in making tests to determine the characteristics of insulators used on electric power systems. This standard is not an insulator specifi

    21、cation, but rather a test method to be used in conjunction with insulator specifications. Suggestions for improvement of this standard will be welcome. They should be sent to National Electrical Manufacturers Association, 1300 North 17th Street, Rosslyn, VA 22209. This standard was processed and app

    22、roved for submittal to ANSI by Accredited Standards Committee on Insulators for Electric Power Lines, C29. Committee approval of the standard does not necessarily imply that all committee members voted for approval. At the time it approved this standard, the ASC C-29 Committee had the following memb

    23、ers: Rob Christman, Chairman Steve Griffith, Secretary Organization Represented: Name of Representative: Edison Electric Institute B. Freimark R. Christman E. Cleckley M. Garrels W. Avery J. Varner (alt) R. Kluge (alt) G. Obenchain (alt) Institute of Electrical and Electronic Engineers T. Grisham J.

    24、 Hildreth A. Jagtiani J. Kuffel A. Phillips E. Gnandt (alt) National Electrical Manufacturers Association P. Maloney A. Baker R. A. Bernstorf G. Powell G. A. Stewart E. Kress (alt) Z. Lodi (alt) E. Niedospial (alt) A. Schwalm (alt) Tennessee Valley Authority J. Nelson Western Area Power Administrati

    25、on R. Clark C29.1-1988 (R2002, R2012) Page ii Copyright 2013 by the National Electrical Manufacturers Association C29.1-1988 (R2002, R2012) Page iii Copyright 2013 by the National Electrical Manufacturers Association TABLE OF CONTENTS Page FOREWORD . iv 1 SCOPE 1 2 DEFINITIONS 1 2.1 Insulators and P

    26、arts 1 2.2 Low-Frequency Voltages . 2 2.3 Impulse Voltages . 2 2.4 Mechanical Strength 3 2.5 Miscellaneous 3 3 TEST-SPECIMEN MOUNTING FOR ELECTRICAL TESTS 3 3.1 Suspension Insulators . 3 3.2 Line Insulators (Pin, Post) . 4 3.3 Apparatus Insulators (Cap and Pin, Post) . 4 3.4 Strain Insulators 4 3.5

    27、Spool Insulators . 5 4 ELECTRICAL TESTS 5 4.1 General 5 4.2 Low-Frequency Dry Flashover Voltage Tests . 5 4.3 Low-Frequency Wet Flashover Voltage Tests 6 4.4 Low-Frequency Dry Withstand Voltage Tests . 7 4.5 Low-Frequency Wet Withstand Voltage Tests . 7 4.6 Low-Frequency Dew Withstand Voltage Tests

    28、8 4.7 Impulse Flashover Voltage Tests . 8 4.8 Impulse Withstand Voltage Tests 9 4.9 Radio-Influence Voltage Tests . 9 4.10 Visual Corona Test . 10 4.11 Puncture Tests . 10 5 MECHANICAL TESTS . 11 5.1 Ultimate Mechanical-Strength Tests . 11 5.2 Combined Mechanical-and Electrical-Strength Test (Suspen

    29、sion Insulators) 13 5.3 Time-Load-Withstand-Strength Test . 13 5.4 Porosity Test . 13 5.5 Thermal Test . 13 5.6 Pinhole-Gaging Test 14 6 GALVANIZING TEST 14 7 ROUTINE TESTS 14 7.1 Electrical Tests . 14 7.2 Mechanical Tests . 14 8 REVISION OF AMERICAN NATIONAL STANDARDS REFERRED TO IN THIS DOCUMENT .

    30、 15 C29.1-1988 (R2002, R2012) Page iv Copyright 2013 by the National Electrical Manufacturers Association TABLE 1 Rate of Increase of Load . 11 FIGURES 1 Low-Frequency Humidity Correction Factors . 16 2 Impulse Humidity Correction Factors 17 C29.1-1988 (R2002, R2012) Page 1 Copyright 2013 by the Nat

    31、ional Electrical Manufacturers Association Electrical Power Insulators Test Methods 1 SCOPE This standard comprises a manual of test methods to be followed in making tests to determine the characteristics of electrical power insulators, as defined herein. Individual tests shall be made only when spe

    32、cified 2 DEFINITIONS NOTE: Definitions as given herein apply specifically to the subject treated in this standard. For additional definitions see American National Standard Dictionary of Electrical and Electronics Terms, ANSI/IEEE 100-1988. 2.1 Insulators and Parts 2.1.1 Insulator. An insulator is a

    33、 device intended to give flexible or rigid support to electric conductors or equipment and to insulate these conductors or equipment from ground or from other conductors or equipment. An insulator comprises one or more insulating parts to which connecting devices (metal fittings) are often permanent

    34、ly attached. 2.1.2 Shell. A shell is a single insulating member, having a skirt or skirts without cement or other connecting devices, intended to form a part of an insulator or an insulator assembly. 2.1.3 Pin Insulator. A pin insulator is an insulator having means for rigid mounting on a separable

    35、pin. 2.1.4 Post Insulator. A post insulator is an insulator of generally columnar shape, having means for direct and rigid mounting. 2.1.5 Cap and Pin Insulator. A cap and pin insulator is an assembly of one or more shells with metallic cap and pin, having means for direct and rigid mounting. 2.1.6

    36、Line Insulator (Pin, Post). A line insulator is an assembly of one or more shells, having means for semirigidly supporting line conductors. 2.1.7 Apparatus Insulator (Cap and Pin, Post). An apparatus insulator Is an assembly of one or more apparatus-insulator Units, having means for rigidly supporti

    37、ng electric equipment. 2.1.7.1 Unit. An apparatus-insulator unit is an assembly of one or more shells with attached metal parts, the function of which is to support rigidly a conductor, bus, or other conducting elements on a structure or base member. 2.1.7.2 Stack. An apparatus-insulator stack is a-

    38、rigid assembly of two or more apparatus-insulator units. 2.1.8 Suspension Insulator. A suspension insulator is an insulator with attached metal parts having means for nonrigidly supporting electric conductors. 2.1.8.1 Unit. A suspension-insulator unit is an assembly of a shell and hardware, having m

    39、eans for non-rigid coupling to other units or terminal hardware. AMERICAN NATIONAL STANDARD ANSI/NEMA C29.1-1988 (R2002, R2012) C29.1-1988 (R2002, R2012) Page 2 Copyright 2013 by the National Electrical Manufacturers Association 2.1.8.2 String. A suspension-insulator string is an assembly of two or

    40、more suspension Insulators in tandem. 2.1.9 Strain Insulator. A strain insulator is an insulator generally of elongated shape, with two transverse holes or slots. 2.1.10 Spool Insulator. A spool insulator is an insulator of generally, cylindrical form having an axial mounting hole and a circumferent

    41、ial groove or grooves for the attachment of a conductor. 2.1.11 Wire Holder. A wire holder is an insulator of generally cylindrical or pear shape, having a hole for securing the conductor and a screw or bolt for mounting. 2.2 Low-Frequency Voltages 2.2.1 Low Frequency. Low frequency, as used in this

    42、 standard, means any frequency between 15 and 100 hertz. 2.2.2 Low-Frequency Flashover Voltage. A low-frequency flashover voltage of an insulator is the root-mean-square value of the low-frequency voltage that, under specified conditions, causes a sustained disruptive discharge through the surroundi

    43、ng medium. 2.2.2.1 Dry flashover voltage tests are tests as described in 4.2. 2.2.2.2 Wet flashover voltage tests are tests as described in 4.3. 2.2.3 Low-Frequency Withstand Voltage. A low-frequency withstand voltage of an insulator is the root- mean-square value of the low-frequency voltage that,

    44、under specified conditions, can be applied without causing flashover or puncture mean-square value of the low-frequency voltage that, under specified conditions, can be applied without causing flashover or puncture. 2.2.3.1 Dry withstand voltage tests are tests as described in 4.4. 2.2.3.2 Wet withs

    45、tand voltage tests are tests as described in 4.5. 2.2.3.3 Dew withstand voltage tests are tests as described in 4.6. 2.2.4 Low-Frequency Puncture Voltage. A low-frequency puncture voltage of an insulator is the toot-mean-square value of the low-frequency voltage that, under specified conditions, cau

    46、ses disruptive discharge through any part of the Insulator. Puncture tests are tests as described In 4.11. 2.3 Impulse Voltages 2.3.1 Impulse Wave. An impulse wave is a unidirectional surge generated by the release of electrical energy into an impedance network. 2.3.2 Impulse Flashover Voltage. An I

    47、mpulse flash over voltage of an insulator is the crest value of the impulse wave that, under specified conditions, causes flashover through the surrounding medium. 2.3.3 Critical Impulse Flashover Voltage. The critical impulse flashover voltage of an insulator is the crest value of the impulse wave

    48、that, under specified conditions, causes flashover through the surrounding medium on 50% of the applications. Impulse flashover voltage tests are tests as described in 4.7. C29.1-1988 (R2002, R2012) Page 3 Copyright 2013 by the National Electrical Manufacturers Association 2.3.4 Impulse Withstand Vo

    49、ltage. The impulse withstand voltage of an insulator is the crest value of an applied impulse voltage that, under specified conditions, does not cause a flashover, puncture, or disruptive discharge on the test specimen. Impulse withstand voltage tests are tests as described in 4.8. 2.4 Mechanical Strength 2.4.1 Ultimate Mechanical Strength. The ultimate mechanical strength of an insulator is the load at which any part of the insulator fails to perform its function of providing a mechanical support without regard to electrical failure. Ult


    注意事项

    本文(ANSI NEMA C29.1-1988 Test Methods for Electrical Power Insulators.pdf)为本站会员(王申宇)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开