欢迎来到麦多课文档分享! | 帮助中心 海量文档,免费浏览,给你所需,享你所想!
麦多课文档分享
全部分类
  • 标准规范>
  • 教学课件>
  • 考试资料>
  • 办公文档>
  • 学术论文>
  • 行业资料>
  • 易语言源码>
  • ImageVerifierCode 换一换
    首页 麦多课文档分享 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    ANSI ASTM D2624-2015 Standard Test Methods for Electrical Conductivity of Aviation and Distillate Fuels《航空和馏分燃料电导率试验方法》.pdf

    • 资源ID:432290       资源大小:165.11KB        全文页数:11页
    • 资源格式: PDF        下载积分:5000积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    二维码
    微信扫一扫登录
    下载资源需要5000积分(如需开发票,请勿充值!)
    邮箱/手机:
    温馨提示:
    如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如需开发票,请勿充值!如填写123,账号就是123,密码也是123。
    支付方式: 支付宝扫码支付    微信扫码支付   
    验证码:   换一换

    加入VIP,交流精品资源
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ANSI ASTM D2624-2015 Standard Test Methods for Electrical Conductivity of Aviation and Distillate Fuels《航空和馏分燃料电导率试验方法》.pdf

    1、Designation: D2624 15 An American National StandardDesignation: 274/99Standard Test Methods forElectrical Conductivity of Aviation and Distillate Fuels1This standard is issued under the fixed designation D2624; the number immediately following the designation indicates the year oforiginal adoption o

    2、r, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. S

    3、cope*1.1 These test methods cover the determination of theelectrical conductivity of aviation and distillate fuels with andwithout a static dissipator additive. The test methods normallygive a measurement of the conductivity when the fuel isuncharged, that is, electrically at rest (known as the rest

    4、conductivity).1.2 Two test methods are available for field tests of fuelconductivity. These are: (1) portable meters for the directmeasurement in tanks or the field or laboratory measurement offuel samples, and (2) in-line meters for the continuous mea-surement of fuel conductivities in a fuel distr

    5、ibution system. Inusing portable meters, care must be taken in allowing therelaxation of residual electrical charges before measurementand in preventing fuel contamination.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4

    6、This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specificprecau

    7、tionary statements, see 7.1, 7.1.1, and 11.2.1.2. Referenced Documents2.1 ASTM Standards:2D4306 Practice for Aviation Fuel Sample Containers forTests Affected by Trace ContaminationD4308 Test Method for Electrical Conductivity of LiquidHydrocarbons by Precision Meter3. Terminology3.1 Definitions:3.1

    8、.1 picosiemens per metre, nthe unit of electrical con-ductivity is also called a conductivity unit (CU). A siemen isthe SI definition of reciprocal ohm sometimes called mho.1 pS/m 5 1 31021221m215 1cu5 1 picomho/m (1)3.1.2 rest conductivity, nthe reciprocal of the resistivity ofuncharged fuel in the

    9、 absence of ionic depletion or polariza-tion.3.1.2.1 DiscussionIt is the electrical conductivity at theinitial instant of current measurement after a dc voltage isimpressed between electrodes, or a measure of the averagecurrent when an alternating current (ac) voltage is impressed.4. Summary of Test

    10、 Methods4.1 Avoltage is applied across two electrodes in the fuel andthe resulting current expressed as a conductivity value. Withportable meters, the current measurement is made almostinstantaneously upon application of the voltage to avoid errorsdue to ion depletion. Ion depletion or polarization

    11、is eliminatedin dynamic monitoring systems by continuous replacement ofthe sample in the measuring cell, or by the use of an alternatingvoltage. The procedure, with the correct selection of electrodesize and current measurement apparatus, can be used tomeasure conductivities from 1 pS/m or greater.

    12、The commer-cially available equipment referred to in these methods coversa conductivity range up to 2000 pS/m with good precision (seeSection 12), although some meters can only read to 500 or1000 pS/m.4.1.1 The EMCEE Models 1150, 1152, and 1153 Metersand D-2 Inc. Model JF-1A-HH are available with ex

    13、pandedranges but the precision of the extended range meters has notbeen determined. If it is necessary to measure conductivitiesbelow 1 pS/m, for example in the case of clay treated fuels orrefined hydrocarbon solvents, Test Method D4308 should beused.1These test methods are under the jurisdiction o

    14、f ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and are the direct responsibilityof Subcommittee D02.J0.04 on Additives and Electrical Properties.In the IP, these test methods are under the jurisdiction of the StandardizationCommittee.Current edition approved April 1, 2015. P

    15、ublished May 2015. Originallyapproved in 1967. Last previous edition approved in 2009 as D2624 09. DOI:10.1520/D2624-15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer

    16、 to the standards Document Summary page onthe ASTM website.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States15. Significance and Use5.1 The ability of a fuel to dissipate

    17、charge that has beengenerated during pumping and filtering operations is controlledby its electrical conductivity, which depends upon its contentof ion species. If the conductivity is sufficiently high, chargesdissipate fast enough to prevent their accumulation and dan-gerously high potentials in a

    18、receiving tank are avoided.PORTABLE METER METHOD6. Apparatus6.1 Conductivity Cell and Current-Measuring ApparatusBecause hydrocarbon conductivities are extremely low com-pared to aqueous solutions, special equipment that is capable ofgiving an almost instantaneous response with application ofvoltage

    19、 is needed.3,46.2 Thermometer, having a suitable range for measuring fueltemperature in the field. A thermometer holder should beavailable so that the temperature can be directly determined forfuel in bulk storage, rail tank cars, and trucks.NOTE 1The Emcee Model 1153 and D-2 Inc. Model JF-1A-HHmeas

    20、ures and stores the sample temperature during the test cycle.6.3 Measuring VesselAny suitable vessel capable of hold-ing sufficient fuel to cover the electrodes of the conductivitycell.37. Reagents and Materials7.1 Cleaning SolventsUse isopropyl alcohol (WarningFlammable) if water is suspected follo

    21、wed by analytical gradetoluene (Warning Flammable. Vapor harmful).7.1.1 A mixture of 50 % volume analytical grade isopropa-nol and 50 % volume analytical grade heptane (WarningFlammable. Vapor harmful) is a satisfactory substitute fortoluene.8. Sampling8.1 Fuel conductivity measurements should be ma

    22、de in situor at the point of sampling to avoid changes during sampleshipment. If it is necessary to take samples for subsequentanalysis, the following precautions should be taken:8.1.1 If the cell is in contact with water and the instrumentis switched on, an immediate offscale reading will be obtain

    23、ed.If the cell has been in contact with water, it shall be thoroughlyrinsed with cleaning solvent, preferably isopropyl alcohol, anddried with a stream of air. In hot, humid conditions, conden-sation on the cell can occur, which can cause abnormally highzero, calibration and sample readings. This ca

    24、n be avoided bystoring the cell at a temperature 2 C to 5 C in excess of themaximum ambient temperature where this is practicable.8.2 The sample size should be as large as practicable (see6.3).8.3 The conductivity of fuels containing static dissipatoradditives is affected by sunlight and other stron

    25、g light sources.Samples in clear glass containers can experience significantconductivity loss within 5 min of sunlight exposure. SeePractice D4306 for further discussion.NOTE 2Test method results are known to be sensitive to tracecontamination from sampling containers. For recommended samplingcontai

    26、ners refer to Practice D4306.8.4 Prior to taking the samples, all sample containers,including caps, shall be rinsed at least three times with the fuelunder test. Used containers should be thoroughly cleaned withcleaning solvent, if necessary, in accordance with D4306,paragraph 6.6, and air dried.8.5

    27、 Conductivity measurements should be made as soon aspossible after sampling and preferably within 24 h.9. Cleaning Procedures9.1 If the cell is in contact with water and the instrument isswitched on, an immediate offscale reading will be obtained. Ifthe cell has been in contact with water, it shall

    28、be thoroughlyrinsed with cleaning solvent, preferably isopropyl alcohol, anddried with a stream of air. The meter may display a non-zeroreading caused by condensation forming on the cell when themeter is taken from a cool, dry environment and subjected tohot, humid conditions. This condition can be

    29、avoided bystoring the cell at a temperature 2 C to 5 C in excess of theambient temperature, when practicable.9.2 In normal use, the probe on handheld instrumentsshould be cleaned with toluene or a mixture of heptane andisopropanol and air-dried after use, to ensure that ionicmaterials absorbed on th

    30、e probe during previous tests will notcontaminate the sample and give an erroneous result.10. Calibration10.1 The calibration procedure will be dependent upon theequipment used. The procedures for the instruments listed inFootnote 3 are described in Annex A1 Annex A7.11. Procedure11.1 The specific i

    31、nstrument calibration procedures detailedin AnnexA1 AnnexA5 are an essential part of the followinggeneralized procedures. The appropriate calibration steps forthe instrument used should be followed prior to commencingthe subsequent procedures.11.2 In Situ Field Measurement on Tanks, Tank Cars, TankT

    32、rucks, etc.For field measurements the conductivity metersreferred to in Footnote 3 are considered suitable. The use ofthese meters in hazardous locations may be restricted by theregulatory agency having jurisdiction. The EMCEE 1152 andMalik MLA 900 have an extension cable or can be equipped3The foll

    33、owing equipment, as listed in RR:D02-1161, RR:D02-1476, RR:D02-1575, and RR:D02-1680 was used to develop the precision statements. Models1150, 1151, 1152, and 1153 from Emcee Electronics, Inc., 520 CypressAve., VeniceFL 34285; Maihak Conductivity Indicator and MLA 900 from MBA InstrumentsGmbH, Fried

    34、rich-List-Str 5, D-25451 Quickborn, Model JF-1A-HH from D-2Incorporated, 19 Commerce Park Road, Pocasset, MA 02559. This is not anendorsement or certification by ASTM. If you are aware of alternative suppliers,please provide this information to ASTM International Headquarters. Your com-ments will re

    35、ceive careful consideration at a meeting of the responsible technicalcommittee,1which you may attend.4The older style Maihak Conductivity Indicator (Annex A1) and the EmceeModel 1151 are no longer in production.D2624 152with one to lower the cell into the tank. High impedance handheld meters are sus

    36、ceptible to electrical transients caused byextension cable flexing during measurements. Failure to holdthe apparatus steady during measurement can result in signifi-cantly poorer precision than shown in Table 1. The followinginstructions apply to the meters referenced in Footnote 3.11.2.1 Check mete

    37、r calibration as detailed in Annex A1,Annex A2, Annex A4, Annex A5,orAnnex A7, depending onthe meter used. Bond the meter to the tank and lower theconductivity cell into the tank to the desired level taking careto avoid partial immersion or contact with tank water bottoms,if present. Move the conduc

    38、tivity cell in an up-and-downmotion to remove previous fuel residues. (WarningToprevent static discharge between a charged fuel and a conduc-tive probe inserted into a tank, the appropriate safety precau-tions of bonding and waiting for charge dissipation should beobserved. For example, theAmerican

    39、Petroleum Institute in RP2003 recommends that a 30-min interval be allowed afterpumping into a storage tank before an operator mounts a tankto insert a sampling device. This will also ensure that the fuelis electrically at rest.)11.2.2 After flushing the cell, hold it steady and afteractivating the

    40、instrument record the highest reading after initialstabilization.This should occur within 3 s. On instruments withmore than one scale range, select the scale that gives thegreatest sensitivity for the conductivity value being deter-mined. Ensure that the appropriate scale multiplying factor (orscale

    41、 range) is used. Record the fuel temperature.NOTE 3The Emcee Model 1153 automatically measures and recordsthe reading at 3 s. The D-2 Model JF-1A-HH Samples 10 times uponactivation, allow the center bar indicator on the display to come to centerwhich indicates the current reading has repeated, once

    42、repeated press thesample button again to display the conductivity, temperature data andstore the data to the instruments memory.11.3 Laboratory and Field Measurements on Sampled Fu-els:11.3.1 Preparation of Containers (Metal or Glass)Prior totaking samples, take extreme care to ensure that all conta

    43、inersand measuring vessels have been thoroughly cleaned. It ispreferable that containers are laboratory cleaned prior toshipment to the field for sampling (see Section 8).11.3.2 MeasurementRinse the conductivity cell thor-oughly with the fuel under test to remove fuel residuesremaining on the cell f

    44、rom previous tests. Transfer the fuel tothe measuring vessel and record the conductivity of the fuelusing the procedure applicable to the particular apparatus. Ifone of the conductivity meters referenced in Footnote 3 is used,follow these instructions: Rinse the cell concurrently with therinsing of

    45、the measuring vessel. Then transfer the sample to betested to the clean, rinsed measuring vessel. Check metercalibration as detailed in Annex A1, Annex A2, Annex A5,orAnnex A7, depending on the meter used. Fully immerse theconductivity cell into the test fuel and measure the conductivityfollowing th

    46、e procedure in 11.2.2 and the appropriate Annex.Record the fuel temperature.NOTE 4In order to avoid erroneous readings, it is important to ensurethat the bottom of the conductivity cell does not touch the samplecontainer. This is applicable to all containers, whatever the material ofconstruction.NOT

    47、E 5When using an analog meter, measurements exceeding therange of the meter are obvious. With the Emcee Model 1152 Digital Meterand the Maihak MLA 900 Meter, measurements exceeding the range ofthe meter are indicated by a single digit “1” in the left side of the displaywhere 1000s are shown. The D-2

    48、 Model JF-1A reports to the display thetext, “Reading Out of Range.” A qualitative conductivity estimate (forwhich precision has not been established) can be made by inserting theprobe in the sample to the first set of holes closest to the tip, which are atthe mid point of the sensing portion of the

    49、 probe. Since the displayedconductivity is inversely proportional to the depth of immersion, the valuedisplayed, if any, should be doubled. Conductivities less than 1 pS/m upto 20 000 pS/m can be determined using Test Method D4308. When usingthe Emcee Model 1153 Digital Meter, measurements exceeding the rangeof the meter “OVER” will be displayed.12. Report12.1 Report the electrical conductivity of the fuel and thefuel temperature at which measurement was made. If theelectrical conductivity reads zero on the meter, report less than1 pS/m.NOTE 6It is recogn


    注意事项

    本文(ANSI ASTM D2624-2015 Standard Test Methods for Electrical Conductivity of Aviation and Distillate Fuels《航空和馏分燃料电导率试验方法》.pdf)为本站会员(hopesteam270)主动上传,麦多课文档分享仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文档分享(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1 

    收起
    展开